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Abstract—As the building sector consumes considerable 

portion of energy worldwide, effective management of 

building energy is of great importance. In this regard, 

forecasting building energy consumption is essential to use 

and manage the energy efficiently. This paper describes 

hourly heating energy load forecasting method with the load 

dataset of National Renewable Energy Laboratory 

(NREL)'s Research Support Facility (RSF) in the United 

States using both typical Artificial Neural Network and 

Nonlinear Autoregressive with Exogenous Inputs (NARX) 

Neural Network. The accuracy of the model is evaluated by 

MBE (Mean Bias Error) and CvRMSE (Coefficient of 

Variation of the Root Mean Square Error). The NARX 

neural network model showed a better performance than 

typical ANN model and it is confirmed that the model 

satisfies the acceptable error range proposed by ASHRAE 

guideline 14. This research explored a way to build a better 

performing neural network model for heating energy load 

prediction based on accumulated dataset. 

 

Index Terms—Building Energy, Heating Load Forecasting, 

Artificial Neural Network (ANN), Nonlinear Autoregressive 

with Exogenous Inputs (NARX) Neural Network 

 

I. INTRODUCTION 

Ref. [1] According to the report by the International 

Energy Agency (IEA), buildings account for about one-

third of global primary energy consumption and about 

one-third of total direct and indirect energy-related 

greenhouse gas emissions. Therefore, efficient 

management of building energy is required, and the 

introduction of building energy management system is 

gradually expanding in the building sector for efficient 

use and management of energy. The core function of the 

building energy management system is to enable in-depth 

analysis of the various data generated in the building, and 

the effective linkage of individual building components, 

plant systems and the overall operation of the building 

with the analysis results. Accurate load forecasting plays 

an important role in building energy management systems. 

It enables faster and more accurate energy analysis and an 

effective energy utilization plan. It can affect contingency 

planning, load shedding, management strategies and also 
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commercialization strategies. Ref. [2,3] Accordingly, 

various models for precise load prediction are actively 

developed and applied. Those models can be mainly 

divided into the statistical approaches such as ARIMA, 

SARIMA, and ARMAX and the artificial intelligence 

approaches such as ANN, SVM, and fuzzy logic. Ref. [4] 

Due to the ease of use and adaptability to find the optimal 

solutions in a rapid manner, the artificial intelligence 

based approaches have gained popularity in recent years. 

In this paper, we developed a neural network approach 

using nonlinear autoregressive with exogenous input 

model to forecast the heating energy load. Using the 

power consumption data of the Research Support Facility 

in the US National Renewable Energy Laboratory, the 

artificial neural network model and the NARX neural 

network model were developed and compared. The 

accuracy of the model was evaluated by MBE and 

CvRMSE tolerance proposed by ASHRAE guideline14. 

The outline of the paper is structured as follows. 

Section II describes the methodology of ANN and NARX 

neural network. In Section III, it presents the model 

development procedure and the results. Future work is 

discussed in Section IV and the last section concludes the 

paper. 

II. METHODOLOGY 

A Artificial Neural Network  

Ref. [5, 6] ANN, which was introduced by McCulloh 

and Pitts, is a biologically inspired technique that models 

the nonlinear relationships. Neural networks have ability 

to solve complex relationships, adaptive control, decision 

making under uncertainty, and predictive patterns.  

Typical ANN consists of input layer, hidden layer, and 

output layer, each of which is made up of neurons 

interconnected between different layers. Neurons are 

connected by the weights and the activation function 

converts the sum of the weighted inputs to the output. 

Each weight is updated minimizing the error between the 

generated output and the desired output mapping inputs 

closer to the target with a learning algorithm. Fig.1 shows 

the basic ANN architecture. The output of neuron can be 

simply expressed as (1):  

𝑦𝑖 = 𝑓(∑ 𝑥𝑗 ∙ 𝑤𝑖𝑗
𝑛
𝑗=1 )  (1) 
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where i is the index of the neuron in the layer, j is the 

input index in the ANN, 𝑥𝑗 is the input vector, 𝑤𝑖𝑗is the 

weight vector, and f is the activation function. 

 

 

 

Figure 1.  Ref. [7] Basic ANN Structure 

B NARX(Nonlinear Autoregressive with Exogenous 

Inputs) Neural Network 

Ref. [8] NARX, which was proposed by Leontaritis 

and billings, is a nonlinear model which estimates the 

future values of the time series based on its outputs and 

exogenous input. Ref. [9] It can represent wide variety of 

nonlinear dynamic behaviors and have been used in 

various applications. NARX model can be formulated as 

(2): 

y(𝑡 + 1) = 𝑓 (
𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦)

𝑥(𝑡), 𝑥(𝑡 − 1), … , 𝑥(𝑡 − 𝑛𝑥)
) (2) 

where x is input of the network at time t, y is output of 

the network at time t, 𝑛𝑥 is input delay and 𝑛𝑦 is output 

delay. The next value of the dependent output signal y is 

estimated from previous values of the output signal and 

independent input signal. Ref. [9] Depending on how the 

function f  is represented and parameterized, different 

NARX model structures and algorithms are derived, and 

neural network is used for this purpose in this study.  

NARX network has two configurations which are 

series-parallel architecture (open-loop form) as shown in 

the left of Fig. 2 and parallel architecture (closed-loop 

form) as shown in the right of Fig. 2. In the series-parallel 

architecture, the true past values are used instead of 

feeding back the estimated output values to predict the 

future value of the time series. On the other hand, in the 

parallel architecture, output values of the NARX network 

are fed back to the input of the network to predict the 

future value. During the training phase, the series-parallel 

architecture is used and then after the training phase, 

parallel architecture is used for multistep-ahead 

prediction. 

 

Figure 2.  Ref. [7] NARX Neural Network Architecture 

III. EXPERIMENTS AND RESULTS 

A Dataset Description 

In this paper, the power consumption of the National 

Renewable Energy Laboratory (NREL)'s Research 

Support Facility (RSF) in 2011 was used as dataset for 

short-term load prediction. Ref. [10] The data provided 

by the National Renewable Energy Laboratory is based 

on the hourly power consumption measured by individual 

instruments for the purposes of heating, cooling, lighting, 

etc. from January 1 to December 31, 2011. 

In this experiment, we used the heating energy demand 

which is the largest proportion of the power consumption 

and we used the part of the data of the winter period in 

which heating equipment is frequently used. As training 

data, the heating energy consumption, weather data (dry 

bulb temperature, average global irradiation) on working 

day (weekday) of 11/1 ~ 12/9 were used which consists 

of a total of 696sets and we developed separate model for 

one day-ahead forecasting model and one week(five days 

for working day)-ahead forecasting model. 

Using the input processing function “mapminmax” in 

Matlab software, inputs and targets were normalized and 

scaled to be in the range [-1,1]. Then, the trained network 

provided outputs in the range [-1, 1] which were then 

reverse-processed back into the same units as the original 

targets. All simulations are performed in a Matlab 

software environment.  

B Artificial Neural Network Model Development 

The composition of the ANN prediction model is 

shown in Table I. The input variables consists of the dry 

bulb temperature, average global irradiation and hour of 

the day. Various configurations were tested by varying 

the number of hidden neurons (1~20) and the number of 

hidden layers (1~10) to find a network with optimal 

performance. The tangent-sigmoid and pure linear 

transfer functions were employed as the transfer functions 

for the hidden and output neurons, respectively. The 

feedforward network with Levenberg-Marquardt back-

propagation method was used for training the developed 

neural network adapting weights between neurons 

minimizing the error between the outputs of the network 

and the targets. Cross-validation technique was 

performed to control the training process. 
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TABLE I.  COMPOSITION OF ANN MODEL 

Model Components Contents 

Structure 

Input Layer 

Number of neurons:3 

(1) dry bulb temperature 
(2) average global irradiation 

(3) hour of the day(0~23) 

Hidden Layer 
Number of layers:1~10 

Number of neurons:1~20 

Output Layer 
Number of neurons:1 

(1) heating consumption 

Transfer 

Function 

Hidden Neurons Tangent Sigmoid 

Output Neurons Pure Linear 

Training 

Method 
Algorithm Levenberg-Marquardt 

 

To evaluate the performance of the models, following 

metrics are used: CvRMSE(Coefficient of Variation of 

the Root Mean Square Error), MBE(Mean Bias Error) are 

formulated as (3) and (5), respectively. 

Cv𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑎𝑣𝑔
× 100  (3)  

𝑅𝑀𝑆𝐸 =  √
∑(𝑆−𝑀)2

𝑁
  (4) 

𝑀𝐵𝐸 =
∑(𝑆−𝑀)

∑ 𝑀
× 100  (5) 

where S is estimated output, M is actual target data, N is 

total number of data and 𝑀𝑎𝑣𝑔 is average of M. 

To find a network with optimal performance, trial-

error procedure is conducted using a parametrical 

optimization process. The number of hidden neurons and 

hidden layers were sequentially optimized. After finding 

the optimal value for the first component (hidden 

neurons), the next component (hidden layers) was tested 

with the fixed first component as the optimal value. 

When finding the optimal value of the first component, 

hidden layer was fixed to one layer. Separate models 

were developed for one day-ahead forecasting model and 

one week-ahead forecasting model, respectively. Table II 

and Table III summarizes the parametrical values and the 

performance of the network. The former is for one day-

ahead forecasting model and the latter is for one week-

ahead forecasting model. 

TABLE II.  ANN PARAMETRICAL OPTIMIZATION(1DAY) 

Hidden Neurons 

(Hidden layer:1) 

Hidden Layers 

(Hidden neurons:12,optimal result) 

Hidden 

neurons 

Cv 

RMSE 

Hidden 

neurons 

Hidden 

layers 

Cv 

RMSE 
MBE 

1 50.04 12 1 28.49 -2.22 

2 38.12 12 2 30.21 8.58 

3 39.40 12 3 31.46 6.10 

4 34.87 12 4 31.09 11.16 

5 38.67 12 5 39.79 10.95 

6 35.09 12 6 29.67 3.50 

7 40.61 12 7 45.88 14.78 

8 28.87 12 8 35.53 -0.14 

9 35.38 12 9 40.27 6.17 

10 34.98 12 10 31.63 -3.01 

11 32.42 

 
12 28.49 

13 31.68 

14 37.48 

Hidden Neurons 
(Hidden layer:1) 

Hidden Layers 
(Hidden neurons:12,optimal result) 

Hidden 

neurons 

Cv 

RMSE 

Hidden 

neurons 

Hidden 

layers 

Cv 

RMSE 
MBE 

15 30.60 

16 30.74 

17 32.97 

18 33.44 

19 33.86 

20 33.86 

TABLE III.  ANN PARAMETRICAL OPTIMIZATION(1WEEK) 

Hidden Neurons 
(Hidden layer:1) 

Hidden Layers 
(Hidden neurons:8,optimal result) 

Hidden 

neurons 

Cv 

RMSE 

Hidden 

neurons 

Hidden 

layers 

Cv 

RMSE 
MBE 

1 54.28 8 1 29.70 -11.91 

2 40.80 8 2 36.97 -11.81 

3 40.27 8 3 35.01 -8.95 

4 36.21 8 4 34.60 -9.01 

5 43.31 8 5 37.84 -21.41 

6 35.85 8 6 34.59 -7.15 

7 39.55 8 7 34.60 -13.61 

8 29.70 8 8 37.65 -7.45 

9 35.70 8 9 36.81 -13.01 

10 35.59 8 10 35.96 -7.81 

11 30.86 

 

12 31.13 

13 34.05 

14 36.38 

15 30.66 

16 33.93 

17 34.84 

18 35.30 

19 35.99 

20 33.44 

 

As shown in Table II and Table III, optimal number of 

hidden neurons and hidden layers can be found which 

produced the least CvRMSE between the predicted and 

the target value. The least value was obtained when the 

ANN model employed twelve hidden neurons and one 

hidden layer for one day-ahead forecasting model and 

eight hidden neurons and one hidden layer for one week-

ahead forecasting model. Fig. 3 shows the example of the 

configuration of the developed ANN model. The 

CvRMSE between the predicted and the target value was 

28.49 for the one day-ahead forecasting model and 29.70 

for the one week-ahead forecasting model. 

 

 

Figure 3.  Matlab ANN Configuration 

C NARX Neural Network Model Development 

The composition of the NARX neural network 

prediction model is shown in Table IV. Series-parallel 

architecture (open-loop) is used for training phase which 

means that the actual target values are feedback to the 

network, and parallel architecture (closed-loop) is used 

for testing phase which means that the estimated outputs 
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are fed back to the network. Various configurations were 

tested by varying the number of hidden neurons (1~20) 

and the number of delays (12~240) to find a network with 

optimal performance. Delay parameter concerns the 

number of hours the model is going to use to perform the 

prediction. 

TABLE IV.  COMPOSITION OF NARX NEURAL NETWORK MODEL 

Model Components Contents 

Structure 

Input Layer 

Number of neurons:3 

(1) dry bulb temperature 
(2) average global irradiation 

(3) hour of the day(0~23) 

Hidden Layer 
Number of layers:1 

Number of neurons:1~20 

Output Layer 
Number of neurons:1 

(1) heating consumption 

Delay 12~120 hours 

Transfer 
Function 

Hidden Neurons Tangent Sigmoid 

Output Neurons Pure Linear 

Training 
Method 

Algorithm Levenberg-Marquardt 

 

To find a network with optimal performance, the 

number of hidden neurons and delays were sequentially 

optimized with a parametrical optimization process. After 

finding the optimal value for the first component (hidden 

neurons), the next component (delay) was tested with the 

fixed first component as the optimal value. When finding 

the optimal value of the first component, delay parameter 

was fixed to 60 hours. Separate models were developed 

for one day-ahead forecasting model and one week-ahead 

forecasting model, respectively. Table V and Table VI 

summarizes the parametrical values and the performance 

of the network. The former is for one day-ahead 

forecasting model and the latter is for one week-ahead 

forecasting model. 

TABLE V.  NARX NEURAL NETWORK PARAMETRICAL 

OPTIMIZATION(1DAY) 

Hidden Neuron 

(Hidden layer:1, 

Delay:60) 

Delays 
(Hidden neurons:12,optimal result) 

Hidden 

neurons 

Cv 

RMSE 

Hidden 

neurons 
Delays 

Cv 

RMSE 
MBE 

1 35.73 12 12 36.54 10.75 

2 32.20 12 24 28.92 13.92 

3 42.70 12 36 25.51 -13.97 

4 39.65 12 48 40.23 9.69 

5 40.74 12 60 18.87 -0.53 

6 61.57 12 72 30.95 7.24 

7 49.09 12 84 37.63 -3.93 

8 50.38 12 96 26.85 2.06 

9 61.14 12 108 64.96 -10.43 

10 37.56 12 120 24.34 -4.18 

11 34.34 

 

12 18.87 

13 28.38 

14 28.55 

15 30.25 

16 31.30 

17 34.26 

18 33.79 

19 29.19 

20 40.07 

TABLE VI.  NARX NEURAL NETWORK PARAMETRICAL 

OPTIMIZATION(1WEEK) 

Hidden Neuron 
(Hidden layer:1, 

Delay:60) 

Delays 

(Hidden neurons:12,optimal result) 

Hidden 
neurons 

Cv 
RMSE 

Hidden 
neurons 

Delays 
Cv 

RMSE 
MBE 

1 37.62 12 12 46.73 23.29 

2 44.21 12 24 44.86 35.57 

3 73.55 12 36 27.68 -3.85 

4 60.46 12 48 41.74 15.68 

5 43.87 12 60 37.52 14.73 

6 65.68 12 72 37.30 16.20 

7 60.22 12 84 74.57 40.93 

8 57.76 12 96 49.09 29.30 

9 113.46 12 108 66.43 -4.83 

10 49.85 12 120 32.45 1.77 

11 43.68 

 

12 37.52 

13 37.56 

14 46.12 

15 58.43 

16 46.73 

17 54.92 

18 50.27 

19 45.24 

20 44.90 

 

As shown in Table V and Table VI, the least CvRMSE 

value was obtained when the NARX neural network 

model employed twelve hidden neurons and 60 hours 

delay for one day-ahead forecasting model and twelve 

hidden neurons and 36 hours delay for one week-ahead 

forecasting model. Fig. 4 and Fig. 5 show the example of 

the configuration of the developed NARX neural network 

model for training phase and testing phase. The CvRMSE 

between the predicted and the target value was 18.87 for 

the one day-ahead forecasting model and 27.68 for the 

one week-ahead forecasting model. 

 

 

Figure 4.  Matlab NARX Neural Network Series-Parallel 
Configuration(Training) 

 

Figure 5.  Matlab NARX Neural Network Pararell 
Configuration(Testing)  

D Results 

The results of the load forecasting of this study using 

the ANN and NARX neural network are shown in the 

following Table VII and Fig. 6, Fig. 7, Fig. 8, Fig. 9. The 
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developed ANN model employed twelve hidden neurons 

and one hidden layer for one day-ahead forecasting 

model and eight hidden neurons and one hidden layer for 

one week-ahead forecasting model. The developed 

NARX neural network model employed twelve hidden 

neurons and 60 hours delay for one day-ahead forecasting 

model and twelve hidden neurons and 36 hours delay for 

one week-ahead forecasting model. Table VII 

summarizes CvRMSE and MBE of each model.  

TABLE VII.  RESULTS OF CALIBRATION TOLERANCE INDEX 

Forecasting 

Period 

(Working Day) 

Index 
Artificial Neural 

Network 
NARX Neural 

Network 

1 day 

(24 hours) 

CvRMSE 28.49 18.87 

MBE -2.22 -0.53 

1 week 

(120 hours) 

CvRMSE 29.70 27.68 

MBE -11.91 -3.85 

 

Ref. [11] The accuracy of the model was evaluated by 

MBE and CvRMSE proposed by ASHRAE(American 

Society of Heating, Refrigerating and Air-Conditioning 

Engineers) as shown in Table VIII. According to the 

ASHRAE guideline14 (2002), the recommended values 

of MBE and CvRMSE for hourly measurements are 

within ±10% and less than 30%, respectively. 

TABLE VIII.  TOLERANCES BY ASHRAE GUIDELINE 14 

Calibration Type Index Acceptable Value 

Hourly 
MBE ±10% 

CvRMSE 30% 

 

For one day-ahead forecasting model, both ANN 

model (CvRMSE: 28.49, MBE: -2.22) and NARX neural 

network model (CvRMSE: 18.87, MBE: -0.53)  satisfied 

the error range specified in Table VIII proposed by 

ASHRAE guideline14. Therefore, developed model can 

be regarded as reliable models. When comparing both 

models, the NARX neural network model showed a better 

performance than ANN model. It is easy to see that the 

actual and predicted data in Fig. 7 fit better than in Fig. 6. 

 

Figure 6.  ANN Forecasting Results(one day-ahead) 

 

Figure 7.  NARX Forecasting Results(one day-ahead) 

For one week-ahead forecasting model, only CvRMSE 

(29.70) of ANN model satisfied the error range specified 

in Table VIII. However, both CvRMSE (27.68) and 

MBE(-3.85) of the NARX neural network model satisfied 

the error range proposed by ASHRAE guideline14. 

Therefore, developed NARX neural network model can 

be regarded as reliable models. When comparing both 

models, the NARX neural network model showed a better 

performance than ANN model also for one-week ahead 

forecasting model.  

 

Figure 8.  ANN Forecasting Results(one week-ahead) 

 

Figure 9.  NARX Forecasting Results(one week-ahead) 
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IV. DISCUSSION 

We have focused on developing a better performing 
neural network model for heating energy load prediction 
using both typical ANN and NARX neural network 
model. Trial-error procedure is conducted using a 
parametrical optimization process to determine the 
optimal number of hidden neurons, hidden layers and 

delays. The optimized parameter values were different for 
each model by the forecast period(one day-ahead or one 
week-ahead) and the developed model for the shorter 
term prediction showed a better performance which 
means that one day-ahead forecasting model (CvRMSE: 
28.49/18.87) is more accurate than one week-ahead 

forecasting model (CvRMSE: 29.70/27.68). When 
comparing the two neural networks, as shown in Table 
VII, the NARX neural network model provide better 
prediction than typical ANN model as the NARX neural 
network model has the additional information contained 
in the previous values of target value which is fed back to 

the input. 
To develop better load forecasting model, future works 

can be considered as follows. 

1. The evolutionary optimization techniques can be 

considered to determine the optimal network architecture 

as the trial-error procedure cannot cover all cases. 

2. The impact of various training algorithms on 

predictive models can be investigated to select the best 

suited algorithm. 

3. Additional input factors can be explored which have 

great influence on the load consumption to enhance the 

performance of the forecast model. 

4. As the size of training data has a great influence on 

the accuracy, optimal training data size for each 

forecasting period need to be explored and the best 

interval to update the model can be derived. 

5. Ensemble models can be constructed with the 

combination of various AI based models compensating 

the weaknesses of each single model. 

V. CONCLUSION 

In this paper, we developed hourly heating energy load 

forecasting model using both typical ANN and NARX 

neural network. We used the heating energy consumption 

of the Research Support Facility(RSF) in 2011 provided 

by the National Renewable Energy Laboratory(NREL) in 

the United States. For training data, total 696sets which 

are the hourly data on working day(weekday) of 11/1 ~ 

12/9 is used. We developed separate model for one day-

ahead forecasting model and one week(five days for 

working day)-ahead forecasting model, respectively. Dry 

bulb temperature, average global irradiation, hour of the 

day(0~23) were used as inputs and trial-error procedure is 

conducted using a parametrical optimization process to 

determine the optimal number of hidden neurons, hidden 

layers and delays. For one day-ahead forecasting model, 

CvRMSE and MBE of ANN model were 28.49, -2.22 and 

those of NARX neural network model were 18.87, -0.53. 

For one week-ahead forecasting model, CvRMSE and 

MBE of ANN model were 29.70, -11.91 and those of 

NARX neural network model were 27.68, -3.85. One 

day-ahead model showed better prediction than one 

week-ahead model and in both cases, the NARX neural 

network models performed better and also satisfy the 

acceptable error range proposed by ASHRAE guideline 

14.  

The enhanced heating energy load forecast model was 

developed taking advantage of both neural network which 

can implicitly detect complex nonlinear relationships and 

NARX network which have additional information 

contained in the previous target values. The proposed 

energy consumption forecasting model can be used for 

effective building energy management system aiming of 

energy conservation and reduced environmental impact. 
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