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VIBRATION AND BUCKLING
OF COMPOSITE BEAMS WITH PARTIAL

SHEAR INTERACTIONS USING HBT

A Chakrabarti1*, A H Sheikh2, M Griffith2 and D J Oehlers2

Free vibration and buckling analysis are presented for composite beams with partial using a
finite element model developed by the authors based on a higher order beam theory (HBT). The
proposed model takes into account the effect of partial shear interaction between the adjacent
layers as well as transverse shear deformation of the beam. A third order variation of the axial
displacement of the fibres over the beam depth is taken to have a parabolic variation of shear
stress which is also made zero at the beam top and bottom surfaces. In the proposed FE
model, there is no need of incorporating any shear correction factor and the model is free from
shear locking problem. The proposed finite element model is validated by comparing the results
with those available in literature. Many new results are presented as there is no published result
on vibration and buckling of composite beams based on higher order beam theory.

Keywords: Composite beam, Partial shear interaction, Higher order beam theory, Finite
element, Vibration, Buckling

INTRODUCTION
Composite beams are widely used in many
engineering applications which utilise the best
material properties of their components. A
common use of these composite structures is
the steel-concrete composite beam where
concrete is utilized to resist the compression
and steel takes the tension developed in it. The
overall behaviour of these structures largely
dependents on the type of connectors used to
join the steel and concrete components where
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the connectors help to transfer the shear stress
from one component to the other to have a
composite action. A mechanical shear
connector such as steel shear stud is quite
common in steel concrete composite beams.
A full composite action may be obtained
theoretically by taking a very strong shear
connector having infinite stiffness to eliminate
any interfacial shear slip, i.e., a full shear
interaction can be achieved with a rigid
connection. However, in practice, a rigid
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connection is hardly realized due to the
deformability of the shear connectors having
finite stiffness. Thus a partial shear interaction
is always observed due to interfacial slip
between the two layers or components of a
composite beam (Oehlers and Bradford,
1995). The problem has been identified long
back and it has been studied by different
investigators which show that the partial shear
interaction has significant effect on the
structural behaviour and it must be considered
in the analysis of composite beams. The partial
shear interaction has similar importance in
other type of composite beams such as
layered wooden beams, wood-concrete floor
system and few other civil engineering
problems. Moreover, some common modelling
issues including partial shear interaction are
also found in multilayered laminated composite
structures made of fibre reinforced polymer
composite materials which are becoming
popular in aerospace, automotive, underwater
and civil engineering problems. However, the
present study will be focused on two layered
composite beams having a single shear
flexible interface such as steel-concrete
composite beams or two layer wooden beams.

 One of the earliest and most cited works
on the partial interaction of composite beams
is due to Newmark et al. (1951) and it is based
on small deformation elastic analysis
considering Euler-Bernoulli’s beam theory for
representing the deformation of beam layers.
By this time a large number of investigations
have been carried out by the various resear-
chers on different aspects of composite beams
and the literature is so vast that it is not feasible
to give a full account of all these. However,
some important studies relevant to the present

research are mentioned as representative
references (Goodman and Popov, 1968;
Girhammar and Pan, 1993; Arzumi et al.,
1981; Jasim, 1997; Salari et al., 1998; Ayub
and Filippou, 2000; Wu et al., 2002; Faella
Cet al., 2002; Dall’Asta and Zona, 2002; Ranzi
et al., 2004; Ranzi et al., 2006; and Schnabl
et al., 2006). All these studies are based on
Euler-Bernoulli’s beam theory (EBT) which
does not consider any effect of transverse
shear deformation assuming the planes
perpendicular to the beam axis before bending
will remain plane and perpendicular to the
curved beam axis after deformation. As the
effect of transverse shear deformation is not
small for beams having small span to depth
ratio, low shear rigidity or continuous spans,
the shear deformation has been incorporated
in the analysis in some recent investigations
(Berczynski and Wroblewski, 2005; Xu and
Wu, 2007; and Schnabl et al., 2007) who used
Timosheko’s beam theory (TBT) to represent
the deformation of the beam layers. A slightly
different approach has been adopted by Ranzi
and others (Ranzi and Zona, 2007; Ranzi,
2008; Ranzi et al., 2010; and Zona and Ranzi,
2011) to analyse steel concrete composite
beams where the EBT is used to model the
concrete slab while the steel girder is modelled
with TBT.

In Timosheko’s beam theory, it is assumed
that any plane perpendicular to the beam axis
before bending remains plane but not
necessarily perpendicular to the beam axis
after deformation. This helps to incorporate the
effect of transverse shear deformation simply
by taking the additional rotation of these planes
as the shear strain which gives a uniform shear
stress distribution over the beam depth
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whereas the actual variation of shear stress is
parabolic and it becomes zero at the beam
top and bottom surfaces. It causes warping of
the beam section over its depth. In order to
get a satisfactory result with this simplification
made in TBT, the shear stiffness of the beam
is modified with a factor known as shear
correction factor which is dependent on the
cross-sectional area of the beam. For a single
layer homogeneous beam having a
rectangular cross-section, the shear correction
factor is 5/6 which can be evaluated by
equating the strain energy in shear. This is
simply used by some researchers for the
analysis of composite beams also but the
shear correction factor should have a different
value depending on the geometry and material
properties of the bounding layers and their
interfacial slip. An accurate estimation of the
shear correction factor will be quite complex.
This may be obtained following the approach of
Whitney (1973) who evaluated shear correction
factors of multilayered composite laminates
having rectangular cross-section considering
perfect interface i.e. a full shear interaction is
taken at the interfaces between the layers.

Moreover, an analysis based on TBT
cannot satisfactorily predict various structural
responses closer to the exact solutions. In order
to overcome all these problems, a higher order
beam theory (HBT) is used to model the
deformation of the composite beam in this
study. The HBT incorporates the warping of
the beam section produced by shear
deformation by taking a nonlinear variation of
the axial displacement of the fibres over the
beam depth. The higher order theories are
often used for the analysis of multilayered
laminated composite structure but these

theories has not been applied to steel-
concrete composite beams and similar
composite beams. The present study has
utilised the concept of the higher order shear
deformation theory proposed by Reddy (1984)
for multilayered composite laminates having
full shear interaction at the interface between
the layers. Reddy (1984) took third order
variation of the in-plane displacements of the
plies over the laminate thickness to have a
quadratic/parabolic variation of shear strains/
stresses over the laminate thickness. The
shear stresses become zero at the top and
bottom surfaces of the laminate which is also
satisfied in this theory (Reddy, 1984) and it
helped to eliminate the additional unknowns
used to express the cubic variation of the in-
plane displacements over the laminate
thickness. Moreover, Reddy’s theory (Reddy,
1984) only retain usual nodal unknowns with
physical interpretation which is not found in
some other higher order theories (Kant, 1982)
and this made it (Reddy, 1984) most elegant.

In this study, Reddy’s theory (Reddy, 1984)
is applied to both the components of material
layers of the composite beams separately
where the centroidal axis of the two
components are taken as their reference axes.
In this situation the shear stress free condition
cannot be utilised at the bottom surface of the
upper component and also at the top surface
of the lower component which is practically the
interface between these two components. The
problem is overcome by taking axial
displacement at the top and bottom surfaces
of the interface as unknowns and it helped to
get interfacial slip easily which is used with the
interfacial shear stiffness to combine the two
components of the composite beam. As the
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possibility of having vertical separation
between the two layers is remote under static
condition, the transverse displacement is taken
to be same for both the layers. The higher order
theory (Reddy, 1984) is simple and elegant as
mentioned earlier but the finite element
formulation of this theory demands C1

continuity of the transverse displacement w as
it involves second order derivative of w in the
strain components. For a beam problem, the
satisfaction of this continuity requirement is not
that difficult as that found in plate/shell elements
but a C0 continuous finite element formulation
is always attractive due to its computational
elegance. This problem has drawn s
significant attention of various researchers and
a number of investigations are carried out for
finding out a satisfactory solution of this
problem. One of these techniques (Cook et
al., 2002) based on a penalty function
approach is quite attractive which will be
utilised in this study to develop a C0 continuous
composite beam element based on the
quadratic isoparametric formulation. In order
to make the element free from shear locking
and stress oscillation problems the field
consistent technique proposed by Vinayaka
et al. (1996) is used which also helped to
improve the convergence of the proposed
model. The details of the element are
presented in the formulation section.

Xu and Wu (2007) investigated the static,
dynamic and buckling behaviour of composite
beams with partial interactions by using TBT.
The effect of rotary inertia in addition to shear
deformation was included in the formulation
to report the vibration frequencies of composite
beams with partial interaction. Berczynski and

Wrsblewski (2005) and Ranzi and Zona (2007)
also analysed the vibration of steel concrete
composite beams using TBT.

Xu and Wu (2007) presented a two
dimensional analytical solution for the static
analysis of simply supported composite beams
with interlayer slip. Xu and Wu (2008) also
presented the free vibration and buckling
analysis of composite beams with interlayer
slip in line with the previous two-dimensional
theory. They presented results for a two
layered wood-concrete beam for different
boundary conditions considering only one
value of interface spring stiffness.

Chakrabarti et al. (2012) recently proposed
a new one dimensional finite element model
for the static analysis of composite beams with
partial shear interactions using a higher order
beam theory (HBT). This one dimensional
model gives results closer to the exact
solutions and represents the variation of shear
stresses across the depth in a better way. In
this paper, the proposed one dimensional finite
element model based on HBT is applied to
solve the problems of free vibration and
buckling of composite beams with partial
interaction. The model is first validated by
solving some bench mark problems of free
vibration and buckling of composite beams
having partial interactions and the
convergence of the results is also tested. The
results show an excellent performance of the
beam finite element in predicting the free
vibration frequencies and buckling loads of the
composite beams. Some new problems are
solved, which include different boundary
conditions, cross-sectional geometry, and
interfacial spring stiffness, and the results are
presented for future references.
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FORMULATION
The focus of the present study is to investigate
the behaviour of composite beams having two
material layers with a shear flexible interface
as shown in Figure 1. As discussed in the
previous section, a third order variation of the
axial displacement of the fibres over the beam
depth is taken and for the upper layer, it can
be expressed as



 

  



2
0

3

( , , ) ( ) ( )

( ) ( )

c c c c c c

c c c

u x y z u x y x y

x y x

or

     2 3
0c c c c c c c cu u y y y ...(1)

where u
c
 is the axial displacement at the

reference axis of the upper layer passing

through its centroid, 
c
 is the bending rotation,

and 
c
 and 

c
 are the higher order terms. For

the lower layer, this can be similarly expressed

as

     2 3
0s s s s s s s su u y y y ...(2)

The transverse displacement is taken to be
same for both layers as mentioned earlier and
it can be expressed as

  ( , , ) ( , , ) ( )c c s sw x y z w x y z w x w ...(3)

The partial shear interaction of the two
material layers is modelled with distributed
shear springs connecting the two layers at their
interface where the stiffness of these
distributed elastic springs and the interfacial
shear slip can be used to evaluate the
interfacial shear stress. The interfacial slip can
simply be obtained from the axial displacement
at the bottom surface of the upper layer ( cu )
and that at the top surface of the lower layer
( su ) as

  s ss u u ...(4)

As the higher order terms found in Equations

(1) and (2) do not have any physical meaning,

it will cause difficult to impose boundary

conditions in an unknown problem. Thus these

non-physical terms are eliminated with the help

of shear stress free conditions at the top and

bottom surfaces of the beam and taking cu
and su  as independent unknowns. With the

help of Equations (1) and (3), the shear stress

at any point of the upper material layer may be

expressed as

Figure 1: Two Layered Composite Beam with Shear Flexible Interface
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where 
c
 is the shear strain at that point

and G
c
 is the shear modulus of the material.

The shear stress free condition at the beam
top surface can be obtained by substituting
y

c
 = h

c
/2 in the above equation as

23

4
0c c c c c

dw
h h

dx
       ...(6)

The shear stress at any point of the lower
layer can be obtained in a similar manner
using Equations (2) and (3) as

 

  

 
  

 

    
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Similarly the shear stress free condition at
the bottom surface of the beam can be
obtained by substituting y

s
 = –h

s
/2 in the above

equation as

      23
0

4s s s s s

dw
h h

dx
...(8)

Again can be obtained from Equation (1)
by substituting y

c
 = –h

c
 /2 as

      
2 3

0 4 8
c c

c c c c c c

h h
u u h ...(9)

Similarly can be obtained from Equation (2)
by substituting y

s
 = –h

s
/2 as
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2 3

0 4 8

h h
s su u h

s s s s s s
...(10)

Now the non-physical higher order terms
can be expressed in terms of other usual terms
with the help of Equation (6), Equation (8),
Equation (9) and Equation (10) as follows.
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The above equations are substituted in
Equations (1) and (2) which lead to

    0c c c c c c c cu A u B u C D ...(15)

    0s s s s s s s su A u B u C D ...(16)
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It should be noted that the expressions of

u
c
 and u

s
 in the above equations contain

derivative of w, i.e., dw/dx which demands a

C1 continuous finite element formulation as

mentioned earlier. In order to avoid this higher

order continuity problem, dw/dx is taken as an

independent unknown ( ) to have a strain field

which will allow a C0 continuous finite element

formulation.

The stress strain relationship at a point of

the upper or lower layer of the composite beam

may be written as

   
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where 
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, 

i
, 

i
, 

i
, E

i
, and G

i
 are the normal

stress, shear stress, normal strain, shear

strain, modulus of elasticity and shear modulus

respectively of the i th layer and i = c for the

upper layer while i = s for the lower layer. With

the help of Equations (15) and (16), the strain

vector in the above equation may be

expressed as
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where [H]
i
 is a function y

i
 (i.e., dependent on

cross-section) whereas { }
i
 is a function of x

(i.e., dependent on axial coordinate) and these
are as follows.
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With the help of Equations (17) and (18),
the strain energy of the two layers may be
written as
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where          
T

cc c cc
D H D H dA and

         
T

ss s ss
D H D H dA .

The cross-section rigidity matrices [D]
c 
and

[D]
s
 of the two layers presented above are

evaluated numerically following the Gauss

quadrature integration technique.

The strain energy of the distributed shear

springs at the interface between the two layers

may be written with the help of Equation (4) as
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A one dimensional finite element approxi-

mation is used to solve the present problem

taking cou , cu , c , , w,, sou , u ands as the

displacement fields. For its implementation, a

C0 continuous isoparametric beam element

having three nodes is developed. According

to isoparametric formulation (Whitney, 1973),

all the field variables are interpolated in terms

of their nodal values in an identical manner

which may be expressed as
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the corresponding shape function and [I ] is the

identity matrix having an order of 8.

The above equation may be substituted in

Equation (20) to express the generalised strain
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The above equation may be substituted in

Equation (21) to express the strain energy of

the two layers in terms of their stiffness matrix

[Kl] as

       
1

2
T lU K ...(25)

where

              
 

T TlK B D B B D B dxc c c s s s ...(26)

Similarly, the strain energy of the interfacial

shear springs between the two layers may be

expressed in terms of its stiffness matrix [K´]

with the help of Equation (23) as

       
1

2
T

U K ...(27)

where          
T

sK B k B dx ...(28)

In the above equation the matrix B  may

be written as              1 2 3B B B B where

       0 0 0 0 0 0j j jB N N .

In Equations (15) and (16), dw/dx is taken
as an independent unknown () to avoid the
higher order inter-elemental continuity
problem, but is dependent on w and it is simply
equal to dw/dx (i.e., dw/dx – = 0 ) which may
cause numerical inconsistencies in some
problems. The problem is overcome through
satisfaction of the condition dw/dx -  = 0
variationally using a penulty function approach
(Whitney, 1973) taking an addition strain
energy as

   
 

2
p

p

dw
U k dx

dx
                  ...(29)

where k
p
 is the penalty parameter which will

have a large value.

Again this energy can be expressed in
terms of its stiffness matrix [Kp] with the help of
Equation (23) as

       
1

2
Tp pU K ...(30)

where            
Tp p p

pK B k B dx ...(31)

The matrix   
pB in the above equation may

be written as                 1 2 3
p p p pB B B B  where

       0 0 0 0 0 0p
j j jB N N .

With the help of Equation (23), the element
load vector {R} due to a distributed transverse
load q can be obtained from the work done by
the load as

     
T

W wq dx R ...(32)

where       
TqR N q dx ...(33)

The matrix   
qN in the above equation may

be written as                 1 2 3
q q q qN N N N

where,        0 0 0 0 0 0 0q
j jN N .

The integrations found in Equations (26),
(28), (31) and (33) for evaluating the different
stiffness matrices and the load vector is carried
out numerically following gauss quadrature
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technique where a full integration rule is

applied. In order to avoid any locking problem,

the field consistent technique (Reddy, 1984)

is use used as mentioned earlier. The stiffness

matrix of an element [K] can be obtained

simply by combing its different components as

           
l pK K K K ...(34)

Now the mass matrix and the geometric
stiffness matrix of an element can be derived
in the similar manner.

With the help of Equation 3 and Equations
(15-16), the displacement components at any
point within the plate may be expressed as,

       







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
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





 XF

u

u

w

u

u

F
w

u
f i

s

s

so

c

c

co

i
i







...(35)

where [F
i
] is a matrix of order (2 x 8) which

contains A
i
, B

i
, C

i
, D

i
and 1. Also [X] is a matrix

of order (8 x 15), which contains different entries

of the corresponding shape functions N
j
.

Using the above (Equation 35) the

consistent mass matrix of an element can be

written as

         dxdyXdzFFXM ii
T

i
T    ...(36)

where 
i
 is the mass density of the i th beam

component.

In a similar manner the geometric strain
vector may be expressed as

  














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22



        GiGG NCAA
2

1

2

1  ...(37)

where [C
i
] is a matrix of order (2 x 5) which

contains A
i
, B

i
, C

i
, D

i
and 1. Also [N

G
] is a matrix

of order (5 x 24), which contains different entries
of the derivatives of corresponding shape
functions N

j
.

Finally, using the above Equation (37), the
geometric stiffness matrix [G] of an element
can be derived and it may be expressed as

         dxdyNdzCSCNG Gii
T

i
T

G   ...(38)

where the equivalent axial stress of the ith layer,
S

i
may be expressed (Xu and Wu, 2008) as,





2

1i
ii

i
i

hE

PE
S

 where , E
i
 and h

i
 are the modulus

of elasticity and depth of the of the i-th layer
respectively, and P is the axial buckling load
to be calculated.

Integrations found in the Equations (26),
(28), (31), (33), (36) and (38) are carried out
numerically following Gauss quadrature
integration rule. The element stiffness matrix,
geometric stiffness matrix and mass matrix are
evaluated for all the elements and assembled
together to form the overall stiffness matrix [K

g
],

mass matrix [M
g
] and geometric stiffness

matrix [G
g
] and these matrices are stored in

single array following the skyline storage
technique. With these matrices, the governing
equation may be expressed as follows
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Free vibration:       GG MK
2

 ...(39)

Buckling:       gG GPK ...(40)

where  is the frequency of vibration and P is
the critical load of buckling. A computer code
is written to implement the entire process
described above.

RESULTS AND DISCUSSION
In this section studies have been made on
different aspects of composite beams using
the proposed one dimensional finite element
model based on a higher order beam theory
(HBT) to assess the performance of the
proposed model. A computer code was
developed in FORTRAN to implement the
proposed model which is used to generate
results. Problems of two layered composite
beams having rectangular cross-sections
(e.g., wooden beam) as well as flanged (Tor I)
cross-sections (e.g., concrete wood and steel
concrete composite beam) were considered
and analyzed for various boundary, material
configurations and interlayer shear spring
stiffness. As no result is available in the
literature on vibration and buckling for the
present problem based on HBT, the present
results were compared in some cases with the
results of the two dimensional analysis by Xu
and Wu (2008), TBT and EBT of Xu and Wu
(2007) available in the literatures.

Two Layered Concrete-wood Com-
posite Beam

In this example, the problem of free vibration
and buckling of a concrete-wood composite
beam having T-cross-section is solved to
demonstrate the accuracy and convergence
of the results obtained by using the proposed

one dimensional FE model based on the HBT.
The same problem was also solved by Xu and
Wu (2007 and 2008) by TBT/EBT [16] and by
using the two dimensional analytical method
Xu and Wu (2008). The following geometric
and material data are used: thickness of the
upper layer (concrete) of the beam (h

b
) = 50

mm, thickness (depth) of the lower layer (wood)
of the beam (h

a
) = 150 mm, width of both upper

layer beam (b
a
) = 300 mm, width of the lower

layer beam (= b
b
) = 50 mm, modulus of

elasticity of the materials(concrete) used in
upper layer both the layers, E

a
 =12 GPa,

modulus of elasticity of the materials (wood)
used in lower layer both the layers, E

b
 = 8 GPa,

modulus of rigidity of the material used in the
upper layer (G

b
) = 5 GPa, modulus of rigidity

of the material used in the lower layer (G
a
) = 3

GPa and the mass densities of the upper and
lower layers were considered as 2300 kg/m3

and 700 kg/m3 respectively while the interfacial
spring stiffness (k

s
) values were varied

between 0.05 to 500 MPa.

The results of the first six free vibration

frequencies (Hz) and first five buckling loads

(kN) for a simply supported (SS) beam

obtained by the proposed FE model based

on HBT were presented in Tables 1 and 3

respectively and were compared with the

corresponding two dimensional analytical

results by Xu and Wu (2008) and the analytical

results based on TBT and EBT Xu and Wu

(2007). The beam was analysed in this case

by taking interfacial spring stiffness value of

50 MPa. Tables 1 and 3 show that for the

conver-gence to the first vibration frequency/

buckling load values, 10 elements (full beam)

were needed where as 20 elements were
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Frequency (Hz)

References Mode

1 2 3 4 5 6

Present (2*) 10.3860 35.5897 124.8049 139.2526 422.9166 528.1592

Present (4) 10.2817 35.5239 68.5368 115.9788 142.7555 218.2233

Present (8) 10.2743 33.1764 65.4658 108.1720 142.2771 162.5441

Present (12) 10.2738 33.1551 65.2701 107.2274 142.2955 159.3763

Present (16) 10.2738 33.1511 65.2355 107.0569 142.2949 158.7934

Present (20) 10.2737 33.1508 65.2190 106.9751 142.2946 158.5104

Present (50) 10.2737 33.1508 65.2189 106.9750 142.2946 158.5103

Xu and Wu (2008) 10.2768 33.1771 65.3343 107.3095 – 159.2021
(Error %) (0.03) (0.08) (0.18) (0.31) (0.44)

TBT (Xu and Wu, 2007 10.3023 33.3569 65.8811 108.6146 – 161.9071
 and 2008) (Error %) (0.28) (0.62) (1.02) (1.53) (2.14)

EBT (Xu and Wu, 2007 10.3215 33.5264 66.4831 110.1706 – 165.2731
and 2008) (Error %) (0.47) (1.13) (1.94) (2.99) (4.27)

Note:  *Indicates no of elements used to model the full beam

Table 1: Frequencies of a Simply Supported Concrete-Wood Composite Beam

Boundary k
s
(MPa) References Frequency (Hz)

Conditions Mode 1 2 3 4 5 6

SS 0.05 Present 6.0376 15.5123 23.9907 53.5551 94.2376 142.4958

0.5 Present 6.1787 24.1339 48.6799 53.6967 94.3762 143.7812

5 Present 7.2655 25.4623 55.0631 95.7342 124.3589 146.8902

50 Present 10.2737 33.1508 65.2189 106.9750 142.2946 158.5103

Xu and Wu 10.2768 33.1771 65.3343 107.3095 – 159.2021

(2008) (0.03)* (0.08) (0.18) (0.31) (0.44)

500 Present 11.7472 43.8762 90.2772 142.1714 151.7442 210.5106

SC 0.05 Present 9.3955 30.2249 62.4696 105.5842 142.8872 158.9265

0.5 Present 9.5014 30.3472 62.5960 105.7109 143.9201 159.0515

5 Present 10.3905 31.4974 63.8220 106.9540 148.8873 160.2858

Table 2: Frequencies of Concrete-wood Composite Beam for
Different Boundary Conditions With Varying Spring Stiffness (ks)
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required to converge for the remaining
frequency/buckling load values. Based on this
observation it was decided to carry out all the
subsequent analyses with 20 elements in order
to get converged solution for the vibration
frequencies and buckling loads. In Table 1 and
Table 3, the percentage errors of other results
with respect to the present results were
calculated and were shown in parenthesis.
Table 1 and Table 3 show that the present
results based on HBT were very accurate as

expected as they were very close to those of
the two dimensional solution results by Xu and
Wu (2008). While there are increasing
deviations of the present results from the
results based on TBT to EBT, which does not
consider any shear deformation into the
formulation. These deviations were increased
for the vibration frequencies/ buckling loads
corresponding to higher modes.

In Tables 2 and 4, the same problem was
analysed to study the effect of different

Boundary k
s
(MPa) References Frequency (Hz)

Conditions Mode 1 2 3 4 5 6

Table 2 (Cont.)

50 Present 14.1301 38.9126 73.3273 117.4856 152.8183 171.2583

Xu and Wu 14.1376 38.9602 73.4855 117.9755 – 171.9755

(2008) (0.05) (0.12) (0.22) (0.42) (0.42)

500 Present 17.6803 52.8101 100.7265 153.4819 157.8644 222.3976

CC 0.05 Present 13.5831 37.1140 71.9667 117.4215 172.8277 237.5106

0.5 Present 13.6616 37.2193 72.6799 117.5374 172.9436 237.6250

5 Present 14.3881 38.2177 73.1840 118.6766 174.0891 238.7585

50 Present 18.5664 45.1426 82.0197 128.4705 184.3567 249.1786

Xu and Wu 18.5849 45.2227 82.2490 128.9548 185.1945 250.3416

(2008) (0.1) (0.18) (0.28) (0.38) (0.45) (0.47)

500 Present 24.6005 61.8541 111.0442 169.1000 234.5998 306.2695

CF 0.05 Present 2.1681 13.44205 37.2989 72.3364 118.1528 142.8872

0.5 Present 2.3364 13.6241 37.4563 72.5012 118.3088 143.9224

5 Present 3.1134 15.0876 39.0643 74.0440 119.8090 148.8323

50 Present 3.9875 19.9772 48.3069 85.2503 131.9393 152.8372

Xu and Wu 3.9913 20.0468 48.4782 85.9909 132.2778 –

(2008) (0.095) (0.35) (0.35) (0.87) (0.26)

500 Present 4.2459 25.0066 64.6993 116.6225 153.4935 176.0746

Note: * Error in percentage shown in parenthesis
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Frequency (Hz)

1 2 3 4 5

Table 3: Buckling Loads of a Simply Supported Concrete-Wood Composite Beam

Present (2*) 274.068 791.540 3013.843 900.000 900.000

Present (4) 268.547 707.553 1277.456 2087.854 3821.803

Present (8) 268.295 697.973 1202.698 1832.159 2610.606

Present (16) 268.279 697.300 1197.776 1808.793 2533.907

Present (20) 268.278 697.256 1196.791 1806.025 2528.166

Present (50) 268.278 697.256 1196.790 1806.025 2528.165

Xu and Wu (2008) (Error %) 268.6351 699.6742 1205.0415 1826.8929 2570.9989

(0.13) (0.35) (0.69) (1.16) (1.69)

TBT (Xu and Wu 2007 and 2008) 270.0838 708.3848 1229.6902 1883.2759 2683.9653

(Error %) (0.67) (1.60) (2.75) (4.28) (6.16)

EBT (Xu and Wu 2007 and 2008) 271.0222 714.8772 1249.3871 1929.8718 2779.6112

(Error %) (1.02) (2.53) (4.39) (6.86) (9.95)

References

Note:  *Indicates no of elements used to model the full beam

Boundary k
s

References Frequency (Hz)

Conditions (MPa) Mode 1 2 3 4 5

Table 4: Buckling Loads (kN) of Concrete-Wood Composite Beam
for Different Boundary Conditions with Varying Spring Stiffness (ks)

SS 0.05 Present 92.684 365.258 806.858 1400.345 2124.975

0.5 Present 97.067 369.633 811.130 1404.471 2128.929

5 Present 134.217 411.445 852.946 1445.211 2168.119

50 Present 268.278 697.256 1196.790 1806.025 2528.165

Xu and 268.6351 699.6742 1205.0415 1826.8929 2570.9989

Wu (2008) (0.13)* (0.35) (0.69) (1.16) (1.69)

500 Present 350.607 1219.444 2289.942 3377.412 4430.077

SC 0.05 Present 188.263 547.597 1068.041 1730.397 2512.946

0.5 Present 192.638 551.922 1072.244 1734.441 2516.808

5 Present 231.632 593.417 1113.361 1774.319 2555.047

50 Present 436.719 906.677 1463.973 2133.315 2909.313
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boundary conditions and variation of the spring
stiffness (k

s
) values; and also to generate new

results on the free vibration frequencies and
buckling loads respectively for three more
boundary conditions (namely, SC: simply
supported clamped, CC: Clamped clamped,
CF: Clamped free) while the spring stiffness
(k

s
) values are also varied from 0.05 to 500

Mpa. The present results were compared in
Table 2 and Table 4 with the available
corresponding results of Xu and Wu (2008)for
the spring stiffness value of 50 MPa. The
percentage error calculated show the very good
accuracy of the present results based on one
dimensional HBT while compared with the two
dimensional analytical results by Xu and Wu
(2008).

Two Layered Wooden Composite
Beam Having Rectangular Cross
Section

In this example, the problem of the free

vibration of a simply supported two-layered
rectangular composite beam also studied by
Schnabl et al. (2006) for static analysis was
considered. The beam is having a span of 2.5
m. The problem of free vibration was solved
by the proposed finite element (FE) model
based on HBT for three different spring
stiffness (k

s
) values (2.43, 243 and 24300

MPa). For the composite beam, the following
geometric and material data were used. For
the composite beam, the following geometric
and material data are used: Thickness of the
upper layer of the beam (h

b
) = 200 mm,

thickness of the lower layer of the beam (h
a
) =

300 mm, width of both the layers of the beam
(b

a
 = b

b
) = 300 mm, modulus of elasticity of the

materials used in both the layers = E
a
 = E

b
=

12000 MPa, modulus of rigidity of the material
used in the upper layer (G

b
) = 800 MPa, modulus

of rigidity of the material used in the lower layer
(G

a
) = 1200 MPa. The mass density for both the

Boundary k
s

References Frequency (Hz)

Conditions (MPa) Mode 1 2 3 4 5

Table 4 (Cont.)

Xu and 437.7220 911.2396 1477.3659 2163.7066 2966.8595

Wu  (2008) (0.23) (0.50) (0.91) (1.42) (1.98)

500 Present 674.799 1689.542 2791.483 3871.008 4912.431

CC 0.05 Present 362.258 734.149 1400.345 2057.110 2958.625

0.5 Present 369.633 738.432 1404.472 2061.078 2962.388

5 Present 411.445 779.755 1445.211 2100.220 2999.780

50 Present 697.256 1101.584 1806.025 2453.514 3350.510

Xu and 699.8523 1109.0655 1827.4148 2494.8894 3426.6865

Wu  (2008) (0.37) (0.68) (1.18) (1.69) (2.27)

500 Present 1219.444 2089.881 3377.412 4296.068 5451.758

Note: * Error in percentage shown in parenthesis.
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Table 5 Frequencies of a Simply Supported Wooden Composite Beam

          Spring                      Frequency (Hz)

        Stiffness                          Mode

            (MPa) 1 2 3 4 5 6

2.43 31.0952 74.7896 256.2310 399.5388 483.4809 725.6948

243 93.3301 213.8044 275.2490 498.3639 568.3352 737.2565

24300 120.7400 290.2644 359.8142 595.9671 839.0874 937.4604

Figure 2: Typical Cross Section
of A Flanged Composite Beam

Figure 3: Frequencies (Hz)
of a Continuous Steel Concrete

Composite Beam For Different Values
of Spring Stiffness

upper and lower component was considered as
700 kg/m3.

The present results for the first six vibration
frequencies were presented in Table 5. All
these results obtained by the proposed model
based on HBT are new and found to follow the
expected trend.

A Continuous Steel Concrete Com-
posite Beam Having Flanged Cross-
Section

The problem of a two span continuous beam

having an overall length (L) of 6.706 m was

studied in this example. The beam is roller

supported at the right end, pinned at the left
end and supported on an intermediate roller
which divides the beam into two equal spans
of 3.353 m. The cross section (Figure 2)
consists of a rectangular concrete slab (482.6
mm x 60.325 mm) and a steel joist having 76.2
mm x 9.58 mm flanges and a 135.25 mm x
9.58 mm web. The modulus of elasticity for the
steel joist was taken as 206964 MPa while
that of concrete was 27594.3 MPa. The shear
modulus of the joist was 82785.6 MPa and that
of concrete was 11497.6 MPa. The mass
densities of the upper (concrete) and lower
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Figure 4: Buckling Load (kN)
of a Continuous Steel Concrete

Composite Beam for Different Values
of Spring Stiffness

of the beam. It helps to eliminate the need of
an arbitrary shear correction factor dependent
on cross-sectional geometry as required in
TBT. A three node C0 continuous isoparametric
beam finite element based on a displacement
approach is developed for the implementation
of the higher order beam theory. The finite
element formulation was made field consistent
and a full numerical integration of the stiffness
matrix was carried out in order to avoid any
shear locking and stress oscillation problem
as well as to improve the solution accuracy.
The proposed finite element model was
validated by using it to solve numerical
examples of composite beams and the results
obtained were compared with the published
results. The numerical analysis shows the
applicability of the proposed FE model based
on HBT in predicting vibration frequencies and
buckling loads of composite beams with partial
interaction closer to the exact solutions and
more accurately than the existing models
based on EBT and TBT. Some new results
were presented, which should be useful for
future research, as there was no published
result on composite beams based on HBT.
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