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Abstract—Road networks are the backbone of transportation 

infrastructure systems around the world. Thus, it is crucial 

to maintain the integrity of road networks to facilitate 

economic and social prosperity. Proper assessment of road 

pavement conditions is essential to effectively preserve road 

networks in good condition. The development of adequate 

condition indices or ranking techniques to evaluate road 

pavement sections necessitates driving reliable weights for 

the various road pavement condition criteria. Different 

objective and subjective weighting approaches are available 

in the literature. Objective approaches are criticized for 

failing to adequately consider the varying significance of 

different criteria, whereas subjective approaches are prone 

to bias and uncertainty. Hence, this research aims at 

developing weights by integrating the application of the 

Analytical Hierarchy Process (AHP), Inter-criteria 

Correlation (CRITIC), and Monte-Carlo simulation to 

develop reliable weights for three condition criteria of 

cracking, rutting, and the International Roughness Index 

(IRI). Then, Multi-Attribute Utility Theory (MAUT) is 

applied to develop a Road Pavement Condition Rating (RCR). 

Also, six other multi-criteria decision-making techniques 

(MCDM) are used to rank the road pavement sections 

according to their condition. The developed techniques are 

used to assess more than 300 road pavement sections. The 

comparison between the ranking results of the different 

MCDM techniques indicates that they are highly correlated.  

 

Keywords—pavement condition assessment, Multi-criteria 

Decision-making (MCDM), Analytical Hierarchy Process 

(AHP), Multi-Attribute Utility Theory (MAUT), Technique 

for Order Preference by Similarity to Ideal Solution 

(TOPSIS), Combined Compromise Solution (CoCoSo) 

 

I. INTRODUCTION 

Road networks are the backbone of the transportation 

infrastructure all over the world. They are critical for 

facilitating the movement of ever-increasing numbers of 

humans and goods [1]. However, keeping road pavement 

in good condition is increasingly challenging. According 

to ASCE’s 2021 Report Card for America’s Infra-structure, 

41.9% of roads in the USA are in poor or mediocre 
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condition [1]. The challenge of maintaining roads in good 

condition boils down to three aspects, the massive size of 

the road networks, the progressive deterioration of road 

pavements, as well as the tightened budget constraints [2]. 

Considering the current size of road networks, some 

agencies have started shifting their priorities from 

constructing new road pavement to maintaining the 

existing assets [3, 4]. 

Different highway agencies evaluate road pavement 

conditions using various condition indices. Condition 

indices are used to provide a measurable assessment of the 

current road pavement condition. Subsequently, they 

constitute reliable tools to rank and prioritize treatment 

activities objectively. Highway agencies regularly collect 

distress and performance measures data such as roughness, 

rutting, cracking, patching, and raveling to evaluate the 

condition of their road pavement networks [5]. 

Quantitative-based and composite condition indices can 

provide a more representative evaluation of the overall 

road pavement condition. However, agencies face 

troublesome challenges when adopting them. One critical 

challenge is that quantitative-based condition indices are 

usually data demanding, e.g., PCI for asphalt pavement 

requires data on 19 different destresses. In some instances, 

lack of data on some distresses and condition criteria 

renders using some traditional indices impractical. 

Another problem is the uncertainty regarding the criticality 

of different condition criteria composing the condition 

index.  

Numerous efforts have been devoted to developing 

condition assessment models for road pavement. Various 

agencies use different approaches to assess their road 

pavement condition. However, the weighted average of 

individual condition criteria (e.g., roughness index, rutting 

index, cracking index, and structural index) is a widely 

used approach [6]. Weights of the various condition 

criteria are usually derived subjectively using expert 

judgment. For example, Oklahoma DOT uses the 

Pavement Quality Index (PQI), which employs the 

weighted summation of multiple condition criteria. 

 

7

International Journal of Structural and Civil Engineering Research, Vol. 13, No. 1, 2024

doi: 10.18178/ijscer.13.1.7-13



Oklahoma DOT PQI is calculated as the weighted sum of 

40% ride index, 30% rut index, 15% structural cracking 

index, and 15% functional cracking index. North Carolina, 

on the other hand, calculates the Overall Condition Index 

(OCI) by subtracting points based on the severity and 

extent of main distresses, such as transverse cracking, 

alligator cracking, ride, rutting, and patching [7]. Iowa 

DOT uses different combinations of rutting, crack, faulting, 

ride quality, and friction based on pavement material to 

calculate the Pavement Condition Index (PCI). However, 

Iowa’s calculation of PCI is based on old statistical 

regression equations. In a bid to improve and simplify the 

PCI calculation, Jia [8] proposed a modified condition 

rating system for the State of Iowa. The Proposed system 

has a 100-point scale to combine the individual indexes 

using a simple weighted sum of 40% ride index, 40% 

cracking index, and 20% rutting [8].  

Thus, it is essential to develop reliable evaluation 

techniques considering data availability and the involved 

uncertainty and bias in the usually used subjective 

weighting techniques. Combining the application of the 

objective weighting approaches, subjective weighting 

approaches, and the Monte-Carlo simulation can provide a 

more reliable methodology for developing reliable weights. 

Thus, this study aims at developing combined condition 

criteria weights using Analytical Hierarchy Process (AHP), 

Inter-criteria Correlation (CRITIC), and Monte Carlo 

simulation. Also, the large corpus of literature on MCDM 

techniques paves the way to establish more sophisticated 

tools to evaluate and rank road pavement sections 

according to their condition. Thus, this study aims at 

utilizing different multi-criteria decision-making 

techniques (MCDM) techniques to assess the road 

pavement based on International Roughness Index (IRI), 

cracking, and rutting. Seven MCDM techniques of MAUT, 

TOPSIS, COCOSO, WASPAS, OCRA, GRA, and 

COPRAS are used to rank road pavement sections 

according to their condition. Also, Multi-Attribute Utility 

Theory (MAUT) was used to advise the development of a 

new pavement condition index of Road Pavement 

Condition Rating (RCR). 

II. METHODOLOGY

The present research study intends to develop a new 

methodology for evaluating and ranking road pavement 

sections. The new assessment approach constitutes two 

stages. The first stage involves developing integrated 

objective-subjective weights for the condition criteria. The 

second stage entails applying and comparing several 

MCDM techniques to rank road pavement sections. The 

methodology of the present research study is depicted in 

Fig. 1. As shown in Fig. 1, first, the condition criteria are 

selected. Second, three types of data are obtained: 

pavement inspection data (IRI, cracking, and rutting), 

expert judgment on the criticality of the individual 

condition criteria, as well as road pavement utility values 

at different severity levels of the various condition criteria. 

Third, weights are derived by integrating the application of 

AHP, CRITIC, and Monte Carlo simulation. Forth, seven 

MCDM techniques are employed to rank the different road 

pavement sections according to their condition. Also, 

MAUT is further used to establish a new pavement 

condition index called RCR. Finally, the results of the 

different MCDM techniques are compared. 

Fig. 1. Framework of the developed road condition assessment model. 

A. Condition Criteria Selection

The combination of roughness and a selection of other

distresses (especially cracking and rutting) is the most 

common in road pavement condition assessments [6]. In 

this regard, two main factors can be noted. First, IRI, 

rutting, and cracking are among the most representative 

indicator of road pavement condition. Second, many 

highway agencies regularly collect inspection data of IRI, 

rutting, and cracking. In the USA, the Moving Ahead for 

Progress in the 21st Century Act (MAP-21) requires all 

agencies to acquire three types of data (IRI, rutting, and 

cracking) about asphalt pavements condition [9]. Some 

agencies have already started adopting the collected data 

in their decision-making process. However, developing an 

overall index considering the three types of data is still 

short in progress. Thus, IRI, rutting, and cracking are 

chosen for evaluating road pavement in the present 

research. 

B. Data Collection

Data are firstly collected by Tabara [10] for the three

adopted condition criteria of IRI, cracking, and rutting. 

The data are gathered for 302 road pavement sections 

managed by the Nebraska Department of Roads (NDOR). 

Statistics of the collected data are presented in Table I. 

Values of the IRI in the collected data range from zero to 

about 6.7 mm/m. Crack width ranges between zero and 

about 65 mm, whereas rut depth varies between 0 and 19 
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mm. Average values of IRI, cracking, and rutting are 2.9 

mm/m, 11.8 mm, and 4.4 mm, respectively. 

Expert opinions are then collected via ten questionnaires 

to evaluate the subjective weights of the three criteria. 

Experts are asked to provide a pairwise comparison based 

on the Saati nine-point scale [11]. 

TABLE I. STATISTIC OF THE COLLECTED DATA ON IRI, CRACKING, AND 

RUTTING 

Statistic  

measure 

Condition criteria 

IRI 

(mm/m) 

Cracking 

(mm) 

Rutting 

(mm) 

Minimum 0 0 0 

Maximum 6.7 65.3 19.0 

Average 2.9 11.8 4.4 

The collected data are later used to derive criteria 

weights by applying the AHP technique. Also, data are 

collected to assess their impact on the road pavement 

condition at various severity levels. The collected data of 

utility assessment at different severity levels are then used 

to develop utility functions for the three criteria considered 

in this study. The obtained utility functions are used to 

calculate the utility values of the different road pavement 

sections using MAUT. 

C.  Weight Deriving 

AHP, CRITIC, and Monte Carlo simulation are 

employed to develop integrated subjective-objective 

weights in the form of probability distribution functions. 

AHP is utilized to scrutinize the relative importance 

weights of the aforementioned criteria. The AHP 

technique is a useful tool for studying complex multi-

dimensional optimization problems [11]. It was developed 

by Saaty in the 1970s to account for qualitative data 

analysis [11]. It utilizes a pairwise comparison matrix to 

compare alternatives on a ratio scale without considering 

the interdependencies between different factors [12]. The 

hierarchy structure can be divided into three sections: the 

ultimate goal of the problem, all viable solutions, known 

as alternatives, and the criteria used to evaluate the 

alternatives [13]. Depending on the intricacy of the 

problem, the criteria are divided into sub-criteria, sub-sub-

criteria, and so forth. Subsequently, a pairwise comparison 

is conducted on the criteria at the same level to evaluate 

any two elements in the hierarchy. The pairwise 

comparison is carried out with respect to the overall goal 

based on experts’ judgment. The pairwise comparison is 

conducted on a nine-point scale where one is assigned if 

the elements are equally important, and nine is given if the 

element is absolutely more important [11]. Based on the 

pairwise comparison of each two elements, a positive 

reciprocal matrix A = (aij) is generated such that aii =1 and 

aij = 1/aji as shown in Eq. (1).  

𝐴 = [
1 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
1/𝑎1𝑛 ⋯ 1

] (1) 

where n is the number of elements being compared per one 

set of pairwise comparisons; aij = importance of alternative 

i over alternative j; and aji = importance of alternative j 

over alternative i. 

The Preference assessments obtained from each 

pairwise comparison in matrix A are transferred into a 

priority vector w. In most cases, the eigenvector method is 

preferable to derive the priority vector from the reciprocal 

matrix. The eigenvector approach computes Wh as the 

primary eigenvector corresponding to the biggest 

eigenvalue in matrix A, referred to as the principal 

eigenvalue λmax, as shown in Eq. (2). 

𝐴𝑤′ = λmax𝑤′ 
 

(2) 

where λmax is the principal eigenvalue ≥ n; and Wh′= [Wh1 , 

Wh2, . . . , Whn]T. 

When performing pairwise comparisons, it is critical to 

verify the consistency property by computing the 

Consistency Index (CI). Subsequently, the Consistency 

Ratio (CR) is calculated to verify the judgments' reliability. 

Moreover, the CRITIC technique is used to derive 

unbiased criteria weights without considering expert 

inputs [14]. Criteria weights are evaluated based on the 

standard deviation of the data and the relationship between 

different condition criteria. The normalized weight (𝑊𝑐𝑖) 

of the ith criterion is evaluated using equation Eq. (3). 

𝑊𝑐𝑖 =  
𝐶𝑟𝑖

∑ 𝐶𝑟𝑗
𝑛
𝑗=1

 (3) 

where 𝐶𝑟𝑖 is calculated for ith criterion as shown in Eq. (4). 

𝐶𝑟𝑖 =  𝜎𝑗 ∑(1 − 𝑐𝑗,𝑖)

𝑚

𝑗=1

 (4) 

where 𝜎𝑗 is the standard deviation of the normalized values 

of the criterion 𝐶𝑟𝑖 ; and 𝐶𝑗𝑖  is the correlation coefficient 

between the criterion i and j. 

Aftermath, criteria weights derived using the CRITIC 

technique are integrated with that calculated using the 

AHP based on the judgment of each expert individually. 

The integrated weights 𝑊𝑖,𝑗 are calculated by multiplying 

the CRITIC weight 𝑊𝑐𝑖 and AHP weight 𝑊ℎ𝑖,𝑗 as shown 

in Eq. (5). Then, the normalized weight 𝑊𝑛𝑖,𝑗  for ith 

criterion and considering the judgment of the jth expert is 

derived. 

𝑊𝑖,𝑗 =  𝑊𝑐𝑖  × 𝑊𝑎𝑖,𝑗      (5) 

where 𝑊𝑖,𝑗 is the integrated weight for the ith criterion and 

considering the judgment of the jth expert. 

Then, Monte Carlo simulation is employed to account 

for the uncertainties and subjectivity associated with 

experts’ judgments. Monte Carlo simulation has been 

utilized in developing various pavement deterioration and 

condition assessment models without demanding an 

extensive historical database. Rodríguez et al. [15] used 

the Monte Carlo simulation model to develop a 

probabilistic model that predicts the roughness of asphalt 

pavement considering all the input variables in random 

form. However, the stochasticity of different distresses and 
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performance measures weights has rarely been included in 

pavement condition assessments.  

Hence, the integrated normalized weights 𝑊𝑛  of the 

condition criteria are analyzed using @Risk software. 

Three goodness-of-fit tests are used to find the best-fit 

distribution of the condition criteria weights. These tests 

are Ch-squared, Kolmogorov Smirnov, and Anderson 

Darling. Thus, Probability distribution functions (PDF) are 

ultimately derived for the different condition criteria 

weights.  

D.  Application of MCDM Techniques 

Seven MCDM techniques are used to evaluate the 

condition of road pavement sections. Six MCDM 

techniques of TOPSIS [16], COCOSO [17], WASPAS 

[18], OCRA [19], GRA [20], and COPRAS [21] are used 

to rank road pavement sections according to their 

condition. Due to size limitations, the specifics of the 

utilized MCDM techniques are not elaborated. However, 

the details of their application can be found in the relevant 

material [16–21]. Monte Carlo simulation is run numerous 

times (1000 times) according to the obtained best-fit 

distribution across each condition criteria. The average 

values are used as criteria weight input for the six utilized 

MCDM techniques. It is important to note that the 

aforementioned MCDM techniques help rank road 

pavement sections according to their condition. Thus, they 

are particularly useful for agencies that adopt the worst-

first (W-F) approach in their maintenance programs.  

Moreover, the obtained PDF of the criteria weights 

alongside the utility values are then used to develop the 

MAUT-based model. Utility functions are a paramount 

component in MAUT models. The utility functions are 

modeled on a scale of ten points to evaluate the effect of 

the various levels of different pavement attributes. On the 

advised scale, zero represents the worst utility value, 

whereas ten represents the best. Utility value scores at 

given attributes’ levels are collected from ten respondents. 

Attribute utility scores assigned by the different 

respondents are averaged at each attribute level. Then, the 

averaged utility score values are used to develop the utility 

functions for the three factors. The MATLAB Curve 

Fitting toolbox was employed to obtain functions 

representing the relationship between the attribute levels 

and utility values. Ultimately, third-order polynomial 

regression is leveraged to construct the utility functions by 

compiling the utility scores reported by the experts in the 

questionnaire responses. The output of this model is a 

probabilistic distribution for the condition rating of each 

road section, and the mean of the distribution is used to 

signify the ultimate condition rating of this section. Also, 

road sections are ranked accordingly.   

E.  Correlation of the MCDM Results 

To compare the used MCDM techniques, the correlation 

between the obtained raking of the road pavement sections 

is performed. As the results are obtained in the form of 

ranking, the Pearson correlation is not useful. Instead, the 

Spearman correlation is used to analyze the relationship 

between the ranking results of the seven MCDM 

techniques. 

III.  RESULTS AND ANALYSIS 

A.  Weights 

A pairwise comparison matrix was advised individually 

for the collected ten questionnaire responses. The pairwise 

comparison matrices were extracted to represent the 

relationship between the IRI, cracking, and rutting. A 

sample of the pairwise comparison matrix that constitutes 

the evaluation of respondent 3 is presented in Table II. As 

illustrated in Table II, respondent 3 assigned lower 

importance to the IRI in comparison to cracking and 

rutting. The comparison shows that cracking is twice as 

significant as the IRI, whereas rutting is 1.5 more 

important than the IRI. Also, Respondent 3 prioritized 

cracking over rutting. Cracking was assigned a relative 

importance of 1.3 compared to rutting. Aftermath, the 

relative weights of the three factors are calculated. The 

calculated weights are presented for the individual 

respondents in Table III. For example, the weights IRI, 

cracking, and rutting are calculated as 0.22, 0.44, and 0.33 

for respondent three, as shown in Table III. 

TABLE II. PAIRWISE COMPARISON OF RESPONDENT THREE 

Criteria IRI Cracking Rutting 

IRI 1 0.5 0.66667 

Cracking 2 1 1.33333 

Rutting 1.5 0.75 1 

TABLE III. AHP AND AHP-CRITIC BASED WEIGHTS FOR THE 

INDIVIDUAL RESPONSES 

Response 
AHP AHP-CRITIC 

IRI Cracking Rutting IRI Cracking Rutting 

1 0.33 0.50 0.17 0.27 0.53 0.20 

2 0.33 0.33 0.33 0.26 0.34 0.39 

3 0.22 0.44 0.33 0.17 0.45 0.38 

4 0.36 0.36 0.27 0.29 0.38 0.33 

5 0.13 0.63 0.25 0.10 0.62 0.28 

6 0.22 0.44 0.33 0.17 0.45 0.38 

7 0.33 0.56 0.11 0.27 0.59 0.14 

8 0.42 0.42 0.17 0.34 0.45 0.21 

9 0.14 0.57 0.29 0.11 0.57 0.32 

10 0.18 0.36 0.45 0.14 0.36 0.51 

On the other hand, the collected data for the three 

condition criteria are used to derive weights using the 

CRITIC technique. The correlation values c are presented 

in Table IV. The normalized weights 𝑊𝑐 are calculated as 

0.263, 0.344, and 0.392 for IRI, cracking, and rutting, 

respectively. Aftermath, integrated weights W are 

calculated using Eq. (5). The integrated weights are 

presented in Table III. For example, the integrated weights 

for IRI, cracking, and rutting are calculated as 0.17, 0.45, 

and 0.38 for respondent three, as shown in Table III. 

Monte Carlo simulation is subsequently applied to 

account for the stochasticity in the responses. The 

calculated weights considering the ten responses are used 

to advise probability distribution for the three factors using 

@Risk software. The developed probability distributions 

and their parameters are presented in Table V. A uniform 
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probability distribution function is developed for IRI with 

an upper threshold (b) of 0.372 and a lower threshold (a) 

of 0.067. Also, a uniform probability distribution function 

is adopted to represent the probability distribution of the 

cracking with an upper threshold (b) of 0.652 and a lower 

threshold (a) of 0.313. A normal distribution function is 

adopted to model the probability distribution of the relative 

weight of rutting. The developed function has an average 

(µ) of 0.314 and a standard deviation (σ) of 0.111. The 

developed PDF are successfully tested against the three 

checks of Kolmogorov Smirnov, Anderson Darling, and 

Chi-Squared. The generated probability distributions are 

used to calculate the condition rating index of the different 

sections as shown later. 

TABLE IV. CORRELATION BETWEEN CONDITION CRITERIA 

 IRI Cracking Rutting 

IRI 1.00 0.24 0.06 

Cracking 0.24 1.00 0.18 

Rutting 0.06 0.18 1.00 

TABLE V. PROBABILITY DISTRIBUTION FUNCTIONS (PDF) FOR 

CONDITION CRITERIA WEIGHTS 

Attribute PDF Parameters 

IRI Uniform a = 0.067, b = 0.372 

Cracking Uniform a = 0.313, b = 0.652 

Rutting Normal µ = 0.314, σ = 0.111 

B.  MCDM 

The use of the attribute utility theory entails the 

development of utility functions for each condition 

criterion. Various types of functions are explored before 

adopting third-order polynomial functions to model the 

three utility functions for IRI, cracking, and rutting. The 

graphical representation of the developed utility function 

is presented in Fig. 2. 

The proposed condition index RCR constitutes a 

weighted average of the utility scores of the three condition 

criteria, as presented in Eq 6. As the condition criteria 

weights are available in the form of PDF,  1000 samples 

are generated to calculate the RCR of each road pavement 

section. The RCR values are used to constitute a normal 

distribution function, as presented in Fig. 2. The condition 

index RCR is used to assess the condition of the 302 road 

pavement sections. Samples of the results obtained for 

road pavement sections 50, 60, and 70 are presented in Fig. 

3. Having RCR as a probability distribution function can 

help decision-makers to consider different confidence 

levels while setting their treatment plans. However, in 

current research, the mean value is used to signify the 

condition of the road pavement sections. Then, road 

pavement sections are ranked accordingly.   

𝑅𝐶𝑅 =  ∑ 𝑃𝐷𝐹𝑖  ×  𝑈𝑖
𝑚=3
𝑖=1                      (6) 

where m is the number of condition criteria; 𝑃𝐷𝐹𝑖  and 𝑈𝑖 

are the PDF and the utility score for the condition criteria 

i, respectively.  

  
(a) IRI (b) Cracking 

 

(c) Rutting 

Fig. 2. Utility functions for (a) IRI, (b) Cracking, and (c) Rutting. 

 

  
(a) Section 50 (b) Section 60 

 
(c) Section 70 

Fig. 3. Histograms showing RCR values for sections 50, 60, and 70 

using 1000 samples. 

The condition of the different road pavement sections is 

also evaluated using the other six MCDM techniques. A 

sample of the results is presented in Fig. 4 for the road 

sections (1–35).  

 

Fig. 4. Sample of the ranking results for the different MCDM 

techniques. 
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C.  Correlation 

The correlation of the seven MCDM techniques results 

is presented in Table VI. The results indicate a high 

correlation between the different MCDM techniques. 

Table VI shows a remarkably high correlation between the 

results obtained using TOPSIS, COCOSO, OCRA, GRA, 

and COPRAS. A maximum correlation of 0.99 is observed 

between CORPAS and GRA, as well as COPRAS and 

TOPSIS. Table VI indicates that MAUT and WASPAS 

have relatively lower correlations with other MCDM 

techniques. The least correlation of 0.83 is found between 

MAUT and WASPAS.  

TABLE VI. CORRELATION MATRIX OF THE RANKING RESULTS FOR THE 

DIFFERENT MCDM TECHNIQUES 

 MAUT TOPSIS COCOSO WASPAS OCRA GRA COPRAS 

MAUT 1.00 0.88 0.86 0.83 0.87 0.89 0.87 

TOPSIS 0.88 1.00 0.98 0.85 0.94 0.97 0.99 

COCOSO 0.86 0.98 1.00 0.85 0.92 0.97 0.98 

WASPAS 0.83 0.85 0.85 1.00 0.91 0.91 0.88 

OCRA 0.87 0.94 0.92 0.91 1.00 0.97 0.96 

GRA 0.89 0.97 0.97 0.91 0.97 1.00 0.99 

COPRAS 0.87 0.99 0.98 0.88 0.96 0.99 1.00 

 

IV.  CONCLUSIONS 

Sustaining road pavement in good condition is a 

challenging task given budgetary constraints, which 

necessitate prioritizing the maintenance of some road 

pavement sections over others. Evaluating road pavement 

conditions is essential for developing effective 

maintenance plans. Thus, this study develops an MCDM-

based methodology for assessing road pavement 

conditions based on IRI, cracking, and rutting. The current 

study integrates the application of multiple MCDM 

techniques. The AHP, CRITIC, and Monte Carlo 

simulation techniques are used to develop criteria weights 

as PDF. Considering the obtained weights, cracking has 

the highest impact on the overall road pavement condition, 

whereas IRI has the least. Seven MCDM techniques of 

MAUT, TOPSIS, COCOSO, WASPAS, OCRA, GRA, 

and COPRAS are used to rank road pavement sections. 

Also, MAUT is used to derive a new condition index called 

RCR. The MCDM techniques are applied to assess 302 

road sections managed by the NDOR. The obtained results 

show a high correlation between the different MCDM 

techniques, particularly between TOPSIS, COCOSO, 

OCRA, GRA, and COPRAS. Future research is needed to 

compare the results of the developed approaches with 

existing standard indices. 
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