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Abstract—The environment surrounding the construction 

industry in Japan is drastically changing with advances in 

IT (Information Technology). The central reason for this 

change is the development of AI (Artificial Intelligence) 

technologies such as deep learning. On the other hand, in 

concrete works, which are often used in the construction 

industry, the system of carrying fresh concrete produced at 

a concrete plant to a construction site using an agitator car, 

placing concrete in a form, compacting with a vibrator, 

finishing the surface, and curing the finished concrete 

surface has hardly changed in more than 30 years. It was 

confirmed in this study that this system can be used to carry 

out more effective compaction management by shifting from 

qualitative management using individual know-how based 

on the experience of conventional workers to quantitative 

management based on AI analysis using images.   

 

Keywords—concrete site, compaction work, image 

processing, deep learning, convolutional neural network 

 

I. INTRODUCTION 

The environment surrounding the construction industry 

in Japan is changing dramatically with the advancement 

of IT (Information Technology). The central reason for 

this change is the development of AI (Artificial 

Intelligence) technologies such as deep learning. 

On the other hand, the flow of concrete work often 

used in the construction industry is as follows: (1) 

manufacturing in a concrete plant, (2) bringing fresh 

concrete to a site using an agitator vehicle, (3) putting 

concrete into a form, (4) compaction using a vibrator, (5) 

finishing the surface, and (6) curing the concrete surface, 

and this system has hardly changed in more than 30 years. 

The quality control of concrete works is often based on 

the know-how and experience of the workers. Once 

trouble occurs, countermeasures are discussed 

considering the age and cost and whether reinforcement 

works are required. In the worst case, if the concrete 

breaks, it may be necessary to rebuild, requiring a lot of 

extra time and cost. Focusing on compaction work in 
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concrete construction, the cause of trouble is often 

attributed to the insufficient compaction of concrete. 

Therefore, by understanding the compaction point at a 

construction site in real time and detecting insufficient 

compaction points before the concrete hardens, re-

compaction can lead to the solution of this problem. 

In a previous study, Sumaga et al. [1] compared the 

compaction works of skilled and junior engineers using a 

wearable camera and found that skilled engineers 

compacted more effectively, but the position, time, and 

depth of insertion of the vibrator by skilled engineers 

were not measured. In Imai et al. [2, 3], we devised a 

measurement method using image analysis and 

processing that takes pictures of the insertion position, 

time, and depth of the vibrator with a wearable camera 

and also using AI. In addition, measurement experiments 

have been carried out on simulated sites to confirm their 

usefulness, but methods for obtaining analysis results in 

real time have not been discussed. 

In this study, focusing on the vibration position of 

vibrators in concrete compaction, a system was 

developed to measure precisely in three dimensions 

where compaction was completed during construction, 

and to quantitatively and real-time detect where and when 

compaction was done in comparison with the 

construction time. Data acquisition was performed using 

moving images taken by a camera mounted on a worker’s 

helmet, and the moving images were transferred to a 

cloud server, and the processing of the moving images 

using AI was carried out and fed back, so that it could be 

confirmed at the construction site. 

As for the concrete compaction position, the problem 

was that the vibrator was buried in the concrete, and it 

was not directly visible during construction, and it was 

not quantitatively detected. To detect the compaction 

position, it is necessary to measure the planar ‘position’ 

and insertion ‘depth’. 

Therefore, in this study, in order to determine the 

planar “position”, an AR marker was placed on-site and it 

was determined from the moving images. At the actual 

site, it is common that concrete is scattered, and the 

markers are dirty. Therefore, by utilizing the inference of 
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the AI model, it is possible to detect markers even if they 

are dirty. 

In order to detect the “depth” of insertion, the vibrator 

was colored, the color was discriminated from the 

moving image, and the insertion depth was determined. 

With this system, it is possible to shift from qualitative 

management using know-how based on the experience of 

conventional workers to quantitative management based 

on AI analysis using moving images, which enables 

reliable compaction management and eliminates 

problems caused by construction. 

II.  METHOD OF DETERMINING COMPACTION POSITION 

In this study, we basically adopted the method devised 

by Imai et al. [2, 3] for determining the insertion position 

and depth (= compaction position) of a vibrator, and 

improved the following items and constructed new 

functions to ensure the real-time display of the analysis 

results. 

A. Wearable Cameras for Workers 

In the previous study [2], a GoPro Hero 6 was adopted 

as the camera mounted on the compaction worker’s 

helmet, but in this study, we decided to use the built-in 

camera of a smartphone, which can transmit the moving 

images taken in real time to the cloud (Fig. 1). The 

smartphone used was a SHARP AQUOS R2 compact and 

AQUOS R5G, and an app has been created to capture 

work situations running on the smartphone. The shooting 

application was designed to start shooting after entering 

the number of the construction site and a code that 

identifies the worker, and the shooting image quality 

could be set to 5 options (SD, HD, 2K, 4K, 8K) and the 

frame rate was set to 10 FPS. The videos captured were 

sent to the cloud once a minute. 

B. Positioning AR Markers to Indicate Plane Position 

In order to understand the position of the vibrator, AR 

markers were attached to the concrete placing forms and 

scaffolds (Fig. 2). The AR markers were printed on 50 

mm square paper and laminated and placed on-site at 500 

mm intervals. The ID values of the individual AR 

markers and their on-site coordinate values were 

registered in the analysis system described later. 

 

Figure 1.  Installation of the wearable camera 

 

Figure 2.  Positioning of AR markers showing planar coordinates 

C. Coloring on Vibrator Hoses 

In order to determine the insertion depth of the vibrator, 

the hose was colored (Fig. 3). The coloring form was 

made to be another color inside the outer color referring 

to the research of Imai et al. [3], and 1 double color 

marker was 50 mm. As a further improvement in this 

study, 25 mm was left between the color markers, and 

this part was also colored according to the distance from 

the hose tip. 

A total of 6 colors were used: red, purple, green, blue, 

yellow, and white, and these were placed on the outside 

and inside of the marker and in the middle of the marker 

as shown in Fig. 4. Thus, by using a combination of the 

color markers (50 mm) and neutral colors (25 mm), the 

distance from the hose tip (insertion depth) could be 

uniquely identified. 

 

Figure 3.  Vibrator hose coloring 

 
Figure 4.  Color combination patterns 

D. Building System Configuration Using the Cloud 

In this study, a system configuration utilizing the cloud 

was constructed for making real-time the process from 

photographing to analysis processing and result display 

(Fig. 5). The shaded part of Fig. 5 represents a cloud 

server. When a moving image taken by a smartphone is 

147

International Journal of Structural and Civil Engineering Research Vol. 12, No. 4, November 2023



uploaded and saved on Server 1, the subsequent 

automatic processing is activated. Automatic processing 

is terminated in the DB that stores the analysis results of 

Server 3 via the analysis processing server of Server 2. 

By going to the cloud, the machine specifications of the 

analysis processing server can be enhanced, and the 

processing speed is increased. In addition, since the 

analysis results can be confirmed anywhere, there is an 

advantage that they can be confirmed on-site, at an office, 

or in a remote place. 

 

Figure 5.  System configuration 

E. New Construction of a Visualization System for 

Compaction Position 

We constructed a system that automatically visualizes 

the calculated compaction position using AI and video 

analysis (Fig. 6). In the visualization system, the position 

and depth of compaction by one insertion of the vibrator 

were expressed by one sphere. The size of the sphere was 

considered to be an appropriately compacted range, and 

specifically, the diameter of the vibrator was set at about 

10 times the manufacturer’s recommended value [4]. If 

all the insertion points of multiple workers can be 

analyzed, the interior of the form will be filled 

sequentially by the filling of the spheres and the concrete 

placing work. On the other hand, if there is compaction 

unevenness, a space without a sphere exists. In the 

construction site trial described in the next chapter, 

compaction is performed while checking the system 

shown in Fig. 6 with a tablet (i-Pad). 

 

Figure 6.  Compaction position visualization 3D system 

III. OVERVIEW OF CONSTRUCTION SITE TRIALS 

A. Construction Summary 

The construction to test the technology of this study 

was “Upstream of Omono River: Construction of a new 

Osawa River Sluice Gate (Ordered by the Ministry of 

Land, Infrastructure, Transport and Tourism, Tohoku 

Regional Development Bureau, Contractor: Shimizu 

Corporation)” (hereinafter referred to as the “covered 

works”). The target construction is part of the Omono 

River Emergency Flood Control and River Extreme 

Disaster Countermeasures Special Emergency Section in 

July 2017, and the construction was to build a bank and 

install a sluice gate in the lowest part of Osawa River to 

prevent the backflow of river water from Omono River to 

Osawa River in case of flood. The outline of the target 

construction is shown in Table I and the completed image 

is shown in Fig. 7. 

TABLE I.  OUTLINE OF THE TARGET WORKS 

Item Content 

River 

Earthworks 
excavation (ICT) 

Sediment 38,100m³ 

Soft rock 20,050m³ 
Road fill (ICT) 21,100m³ 

Sluice gate 

Sluice gate height 15.5m, width34.2m, 

4-ply BOX structure 
Box and culvert height 6.3m 

width29.4m 2m 4 box structure 

Extension 63.8m 

Concrete volume 8,230m³ include building 

Temporary closing 

construction 
Part 1 Part 2 Split Construction 

The embankment 

revetment 

Fill (ICT) 

39,200m³ 

 

Figure 7.  Aerial view as of October 2020 (top) and completed 3D 

model (bottom) 

B. Building a Local 5G Communications Network 

In the target construction, a proprietary local 5G 

communication network was constructed at the site for 

various ICT construction purposes. 5G (5th generation 

mobile communication system) is a communication 

standard in which 4G (LTE) is advanced, and it is a 
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network which has been in full operation in Japan since 

the spring of 2020. 5G is a communication standard with 

three main features: High-capacity communication, 

multiple connections, and low latency and high reliability.  

Local 5G is a dedicated network that allows local and 

corporate entities to build, operate, and use their own 5G 

networks in specific areas, such as in their own buildings 

or premises, as opposed to the 5G services provided by 

national carriers (Fig. 8). 

 

Figure 8.  Local 5G antenna installed at the site. 

IV. COMPACTION POSITION DETERMINATION 

ALGORITHM USING AI MODEL 

A. Overall Data Processing Flow  

The processing flow from the step of acquiring and 

transmitting the moving images to the step of outputting 

the analysis result of the camera mounted on the helmet 

of the compaction worker is shown in Fig. 9. In the 

processing flow, (1) is performed by a smartphone 

application, and (2) to (12) are performed by a data 

analysis server in the cloud. The moving image 

transmission in (1) is used as a trigger, and all subsequent 

processing is automated. 

 

Figure 9.  Processing flow for compaction location analysis 

 

Figure 10.  Example of a CNN network structure [5] 

 

Figure 11.  Portions of a typical CNN network and ResNet [5] 

B. Application of AI  Models  

AI models for image detection include CNN 

(Convolutional Neural Network), a type of deep learning 

[5]–[12]. CNN models the receptive field in the visual 

cortex of the brain and is known to have high 

performance in the field of image recognition. In deep 

learning, CNN has a network with a convolution layer, a 

pooling layer, and all bonding layers (Fig. 10). 

In recent years, CNN research has shown that 

deepening the layers improves performance, but it has 

also been reported that simply deepening the layers 

deteriorates the performance [13]. 

The deterioration problem is the phenomenon that the 

improvement of training error in learning a model with 

deep layers plateaus earlier than a model with shallow 

layers. Focusing on this problem, ResNet has been 

devised as a network architecture that can learn even in 

deep layers. 

The difference between ResNet and ordinary CNN is 

that it learns the residual function with reference to the 

input of the layer. A part of a typical network and ResNet 

is shown in Fig. 11. In the case of the function of H(x), in 

ResNet, in two consecutive convolutional layers, the 

input x to the output two layers ahead, skips to connect. 

At this time, we can input x difference from F(x) to 

become Eq. (1), which is modified and redefined to learn 

Eq. (2). 

F(x)=H(x)−x                              (1) 

H(x)=F(x)+x                             (2) 
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Thus, the optimal function F is replaced by the 

problem of estimating the optimal residual function. Even 

when the identity map is optimal, it can be easily 

approximated if the Shortcut Connection acts as a detour 

to add up the layer’s input values with the network’s 

output before the activation function. Since the Shortcut 

Connection flows the input information as it is, it flows 

the gradient as it is even during reverse propagation. 

Therefore, there is no worry that the slope may be small 

or too large, and a significant slope is maintained. 

A block consisting of such a Shortcut Connection and 

several convolutional layers is called a residual block, 

and a network consisting of multiple layers is called a 

Residual Network. ResNet is a network model that adds 

an input layer and an output layer to this. There are 5 

types of ResNet that have differences in the number of 

layers and the number of parameters that can be learned: 

ResNet18, ResNet34, ResNet50, ResNet101, and 

ResNet152 [5]. 
In this study, we use the ResNet50 model and 

ResNet34 to detect vibrators. RetinaNet is used to detect 
AR markers. RetinaNet is an object detection model 
proposed by Facebook AI Research (FAIR) in their 
August 2017 paper “Focal Loss for Dense Object 
Detection.” As pointed out in the motivation for the 
development of the paper, many of the accurate object 
detection models before RetinaNet were built on the R-
CNN-based two-stage object detector, but RetinaNet was 
improved to make it faster. 

C. Building AI  Models  

Of the processing flows in Fig. 9, AI models were 
constructed for Fig. 9{(4), (5), and (6)}. In the selection 
of the AI model, assuming that the accuracy of the 
analysis is ensured, the inference time should be as short 
as possible in this study because the analysis results must 
be output before concrete hardening. The ResNet50 
model was adopted to detect the color marker of the 
vibrator, although the difficulty is high and an inference 
time is required to detect the vibrator from various 
objects in the moving images. As for the classification of 
the color markers, we adopted ResNet34, which has a fast 
inference time, because moving images after the vibrator 
is detected by the aforementioned model are subject to 
analysis. For the detection of AR markers, the RetinaNet 
model, which is characterized by high-speed processing, 
was adopted because it was confirmed at the examination 
stage that the detection accuracy could be ensured. 

Fig. 9{(4)}’s vibrator hose color marker detection 
exploits the ResNet50 model and returns a bounding box 
for the location of the color marker. The color marker 
classification model in Fig. 9{(5)} judges three colors, 
the outer color, inner color, and border color, for the 
image in the bounding box extracted in Fig. 9{(4)} above. 
The model used a custom classification model from 
ResNet34. The AR marker detection in Fig. 9 {(6)} 
utilizes the RetinaNet model and returns a bounding box 
for the location of the AR marker. 

In order to construct these artificial intelligence models, 
teacher data were acquired and analyzed on the dates 
shown in Table II among the concrete placing dates from 
June to December 2020 in the target construction. 

We verified the results, and the characteristics of this 

study are that all the work days were permanent 

construction, and various teacher data were acquired and 

models were constructed during the actual construction 

site work. 

The number of teacher data images for the AI model is 

shown in Table III. In total, more than 20,000 teacher 

data images were used for learning. The large number of 

teacher data values in the color marker classification 

model is due to the fact that there are 12 kinds of color 

markers and 6 neutral colors, and learning was carried out 

to make them classifiable. 

TABLE II.  TEACHER DATA ACQUISITION AND DATA VALIDATION 

DATES 

Date Location data Content 

6/4 3SP Bottom plate teacher data image 

6/18 3SP Outside wall, Inside wall teacher data image 
6/25 1SP Exterior wall teacher data image 

7/2 4SP Interior wall teacher data image 

7/9 2SP interior wall teacher data image 
8/4 Top plate teacher data image 

9/18 1SP column model validation 
10/8 Color top model validation 

11/9 Back wing wall Real-time verification 

12/2 Wing wall bottom plate Real-time verification 
12/10 Wing wall bottom plate Real-time verification 

12/18 Front wing wall Real-time verification 

TABLE III.  NUMBER OF IMAGES OF TEACHER DATA 

 
Model 

Type 

Number of 
teacher 

data 

Number of 
evaluation 

data 

Color marker detection of 
vibrator hose 

ResNet50 1,025 264 

Color marker classification 

of vibrator hose 
ResNet34 19,348 4,849 

AR Marker Detection RetinaNet 798 198 

Total  21,171 5,311 

TABLE IV.  DETERMINATION ACCURACY OF HOSE COLOR MARKER 

DETECTION AND AR MARKER DETECTION MODELS 

 
Model 

Type 

Fit 

ratio 
(%) 

Reproduc

ibility 
(%) 

F-Value 

Color marker detection 

of vibrator hose 

ResNet

50 
83 96 0.89 

AR Marker Detection 
Retina-

Net 
86 70 0.77 

TABLE V.  JUDGMENT ACCURACY OF COLOR MARKER 

DISCRIMINATION MODEL 

 
model 

type 

Outside 

color 

Inside 

color 

Fit 
ratio 

(%) 

Reprodu-
cibility 

(%) 

F-

Value 

Classifi- ResNet34 Red Yellow 98 98 0.98 
cation  Purple Red 97 96 0.96 

of color  Green Purple 98 95 0.96 
markers  Blue White 98 97 0.97 

  Red Blue 95 96 0.95 

  Purple Green 93 96 0.94 
  Green Yellow 97 99 0.98 

  Blue Red 99 96 0.97 

  Red Purple 94 95 0.94 

  Purple White 96 93 0.94 

  Green Blue 94 92 0.93 
  Blue Green 94 97 0.95 
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D. Decision Accuracy of AI Models 

The accuracy of the AI model constructed in this study 

is shown in Tables IV and V. The color marker detection 

of the vibrator is evaluated to have high evaluation 

performance with high accuracy and reproducibility. 

An example of a slightly low recall rate of 70% in AR 

marker detection is because some AR markers are hidden 

by obstacles such as rebars and hoses (Fig. 12). 

Since many images have more than 3–4 AR markers in 

one image at a normal shooting angle of view, this model 

was also evaluated as an effective level considering the 

requirement to detect at least 2 AR markers. 

 The discriminant model of color markers has a high 

accuracy rate and high recall rate, with an F-value of 0.93 

or more, and can be judged to have high evaluation 

performance, even when viewed with a total of 12 color 

schemes. 

 

Figure 12.  Success and failure cases of AR marker detection 

V. CONSTRUCTION SITE TRIAL RESULTS 

A. Summary of the Trial Results 

In the target construction, we tried photographing with 

a worker’s wearable camera for analysis with the AI 

model constructed in this study. Fig. 13 shows an 

example of the analysis results, in which the compaction 

effect range (about 10 times the diameter of the vibrator) 

centered on the insertion point of the vibrator is 

represented by a sphere. It was confirmed that the spheres 

were displayed by placing layers of concrete according to 

the work procedure. At the construction site, trials were 

conducted from September 18 to December 18, as shown 

in Table II. 

 

Figure 13.  Results of on-site construction on September 18, 2020 

B. Real-time Verification 

1) Wearable camera image quality and transmission 

time 

Since the target construction site was located about 

500 m away from the neighboring village, the actual 

communication speed was about 1 Mbps on the 4G line 

(docomo) available with a common smartphone. In 

addition, since it was possible to construct and use a 

proprietary local 5G line in the target construction, 

moving images captured by the wearable camera were 

actually transmitted using this network and compared 

with the above 4G lines (Table VI). 

It has been confirmed that the video data capacity for 1 

minute of shooting increases as the number of pixels 

increases, reaching about 934MB at 8K. The time 

required to upload these moving image files to a cloud 

server on the Internet (transmission time) is generally two 

minutes or less, considering the time required for the 

post-process moving image processing. In the target 

construction, as shown in Table VI, it became clear that 

the transmission time would be within 2 minutes even at 

8K image quality on a local 5G line, but the number of 

pixels should be less than HD image quality on a general 

4G line. 

TABLE VI.  DATA CAPACITY AND TRANSMISSION TIME FOR 1 MINUTE 

OF PHOTOGRAPHY BY NUMBER OF PIXELS (RESULTS OF 

MEASUREMENTS AT THE CONSTRUCTION SITE) 

 
Number of 

pixcels 

Data 
capacity 

for 1minute 

of shooting 
(MB) 

Local 5G 

send time 

(seconds) 

4G 

send time 

(seconds) 

8K 7680×4320 934 103 827 

4K 3840×2160 403 44 357 
2K 1920×1080 204 23 181 

HD 1280×720 94 10 83 
SD 640×480 60 7 53 

 

2) Analysis time of AI model 

For analysis of the AI model on the cloud side, we 

prepared multiple servers with machine specifications of 

16GB GPU, 8 core CPU, and 61GB memory, and 

performed parallel processing. Of the flows shown in Fig. 

9, the analysis processing time from Fig. 9{(3)–(11)} was 

about 4 to 6 minutes. 

3) Total time feedback result 

In the arrangement up to the preceding paragraph, it 

took up to 2 minutes to transmit data from the wearable 

camera, up to 6 minutes to analyze the AI model on the 

cloud side, and up to 1 minute to display the visualization 

system, so the total was 9 minutes, and the results of the 

analysis could be fed back within 10 minutes of the 

shooting. In this study, the goal was to detect under-

compacted areas before the concrete hardens so that re-

vibration can be performed. As such, result feedback 

within 15 minutes was initially the target value, and we 

were able to obtain a result which achieved this. 

C. Challenges in Construction Site Applications 

As a result of the trial of this technology on-site, the 

following problems were realized and issues with a 
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system utilizing an AI model are described for 

construction site application. 

1) Response to weather, temperature, etc. 

As a result of applying this technology to concrete 

construction from June to December, the thermal 

runaway of devices (equipment) in summer became a 

problem. Wearable cameras at work often shut down due 

to heat, and we replaced the devices each time. 

Second, in winter, when the temperature is low, the 

battery life of the device decreases, which also 

necessitates frequent replacement of the wearable camera. 

When these wearable devices and mobile communication 

devices are used at the construction site, it is important to 

maintain a sufficient reserve for construction. 

On the other hand, the detection situation of the AI 

model showed a certain accuracy regardless of the season, 

and stable function operation could be carried out. The 

reason for this is that there was no night construction in 

the target construction, and we could take pictures under 

sunlight during any season. 

2) Adjusting the angle of view of the wearable camera 

Wearable cameras worn on the helmets of workers 

made light contact with reinforcing bars when the 

workers performed actions such as putting their heads 

between the bars to check the lower layers, and the angle 

of the cameras changed, making it difficult to photograph 

the objects. In this study, as shown in Fig. 1, although in 

the existing helmet the camera is fixed to the outside with 

a band and tape, the camera is mounted in a protruding 

manner, which can cause contact with the rebars. 

On the construction site, the camera angle was adjusted 

each time the camera was out of alignment, but the 

fundamental challenge is to make the device even smaller 

and lighter, and to develop a mounting method that does 

not disturb the wearer. 

3) Ensuring an on-site communication environment 

In order to shorten the data transmission time from the 

wearable camera, it is important to secure the 

communication environment at the construction site. 

When the communication speed of a general mobile line 

is not high enough, as in the case of the subject 

construction, the improvement of local 5G and outdoor 

Wi-Fi environment becomes a problem. 

VI. SUMMARY 

In this study, we developed a system to quantitatively 

examine compaction points in concrete construction 

using moving image analysis with an AI model and to 

feed back the results in real time. The required function 

of this system is to feed back the compaction position 

quickly and accurately from the moving images, but in 

actual concrete work, there are obstacles such as dirt on 

the markers and overhanging reinforcing. The feature of 

this study is that the data acquired under actual site 

conditions were utilized as teacher images, and the 

accurate judgment was verified by the AI model that had 

been trained. 

In the construction site trial, it was confirmed that if 

the analysis results were fed back in real time, it would be 

possible to detect compaction deficiencies early enough 

to enable re-vibration, etc. In addition, this system is 

considered highly useful in shifting from conventional 

qualitative management that relies on experience and 

know-how to quantitative and objective compaction 

management. 

On the other hand, there are also challenges in 

operating the system at outdoor sites, and it is necessary 

to continuously examine these countermeasures in the 

future. 

In addition, future development utilizing this 

technology is considered to include the function of 

automatically determining insufficient compaction points, 

informing of the points that need to be re-vibrated, 

guiding the workers, and the application to education and 

guidance for inexperienced workers. 
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