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Abstract—This research consists to determine the security 

margin reliability with probabilistic analysis using the 

dynamic computed stresses and the RC reinforced concrete 

strength of a specific bridge structure. The maximum 

stresses are obtained from a dynamic finite element damage 

detection analysis in which each value is computed inside a 

mesh element under severe loadings [1, 5]. The RC strength 

stochastic characteristics are calculated from experiments 

and RC composite materials mixture rules. Reliability of 

computed stresses from a damage detection analysis [1] 

became an important structural health monitoring process. 

The main objective of this research work is the probabilistic 

analysis of the dynamic operating stresses using their 

calculated stochastic characteristics. This research work 

allows quantifying the structural warranty period including 

unpredictable and stochastic phenomena like natural 

disasters under severe loadings. An important vital 

structure with known stochastic characteristics is analyzed 

by quantifying and increasing its lifetime period. The RC 

strength stochastic characteristics and structural security 

margin reliability of a specific designed structure are 

performed.  

 

Index Terms—reliability, failure, damage detection, security 

margin, RC strength, stresses, finite element, dynamic, 

probabilities, statistics, health monitoring 

 

I. INTRODUCTION 

Bridges are essential engineering infrastructures. The 

dynamic response of such structures has often been used 

as a basis for analysis within the field of structural health 

monitoring (SHM). However, difficulty often exists when 

bridges exhibit significant nonlinear behavior due to 

aging degradation of structural properties and fracture 

damage as well as uncertainly boundary environmental 

and dynamic loading conditions. 

Structural design takes in consideration probabilistic 

phenomena like severe winds, tsunamis, earthquakes, 

hurricanes and vandalisms which are not included in the 
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design analysis and are not included in the RCPR 

designing code Ref. [5]. Specialized cars manufacturers 

have used to include the reliability analysis in order to 

increase their product warranty period which is obtained 

from the mean time between failures ranging from 

100000 to 200000 km when quantified in kilometers. This 

study aims to determine the security margin maximum 

stresses of a vital structure which has been analyzed with 

a dynamic damage detection finite element analysis. The 

operating stresses are computed at each time step 

iteration inside each mesh element in a transient dynamic 

analysis. Furthermore, the RC strength is calculated from 

experiments and RC composite rules Ref. [1, 2]. The RC 

material is made of reinforcement steel, sands, gravels 

and cement mixtures. 

Reliability is an important analytical decision making 

method in structural design. Some cars manufacturers 

have increased their cars life time warranty by a 2 factor 

with respect to the others. The behavior of a structure 

under severe or random loadings can generate failures or 

catastrophic failures such that the material is stressed 

beyond its strength limit. The types of failures are severe 

loadings, fatigue or corrosion, use of unpredictable 

defective materials and unexpected environmental 

problems. One can introduce some important 

probabilistic events like natural disasters or vandalisms. 

Several important natural structural failures and collapses 

happened on well-known bridges, buildings, aircraft 

structures, spacecraft vehicles, trade centers Ref. [6]. On 

the other hand, some works have been done on the 

reliability estimation studies for different type of bridges 

and a probabilistic approach has been used Ref. [7] to 

assess their safety level. 

Several research works have been published in 

international specialized conferences on structural defects 

and repair and several analysis methods have been 

suggested. We introduce in this research work a new 

method for the determination of the stochastic stresses 

variables characteristics from experiments and 

computations based on statistical formulas of real 

experimental samples values and finite element computed 

ones.  

mailto:mmoussaoui@usthb.dz


  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

120

International Journal of Structural and Civil Engineering Research Vol. 10, No. 3, August 2021

II. PROBLEM FORMULATION 

In dynamic finite element analysis, stresses are 

computed inside each element and at each time step 

iteration ranging from directional stresses to ideal Von 

Mises stresses of structures with material mixture 

characteristics. 

If one selects to use the equivalent Von Mises stress 

with RC material strength characteristics, it is then 

possible to define the security margin as:  

𝑚 = 𝑆𝑅𝐶 − 𝑠𝑒𝑞𝑢𝑖𝑣                    (1) 

where, 𝑆𝑅𝐶  is the RC strength and 𝑠𝑒𝑞𝑢𝑖𝑣  is the 

equivalent ideal Von Mises maximum stress. 

The reliability of a detected potentially damaged 

element is expressed as follows: 

𝑅 = 𝑃(𝑚 ≥ 0) = 𝑃(𝑆𝑅𝐶 ≥ 𝑠𝑒𝑞𝑢𝑖𝑣)         (2) 

where,  𝑚  is a stochastic variable. 

We know also that  𝑅 = 𝑃(𝑛 ≥ 1)  and 𝑛 = 1  is the 

optimized boundary security factor such that  𝑛 =
𝑆𝑅𝐶

𝑠𝑒𝑞𝑢𝑖𝑣
 . 

For the case where the boundary limit is 𝑚 = 0 which 

corresponds to the best reliable case and is considered as 

an acceptable region limit with 𝑆𝑅𝐶 = 𝑠𝑒𝑞𝑢𝑖𝑣 . 

Tabulated values use the probability of failure using 

the following relation: 

𝐹 = 1 − 𝑅(𝑡) = 𝑃(𝑚 < 0) = 𝑃(𝑆𝑅𝐶 < 𝑠𝑒𝑞𝑢𝑖𝑣)      (3) 

Let 𝑓(𝑚)  be the probability security margin density 

function with the normal probability law such that [3, 4]: 

∫ 𝑓(𝑚) 𝑑𝑚 = 1
+∞

−∞
                                       (4) 

 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
   is also called the failure probability 

density function. And let 𝑋 be a stochastic variable, then 

its mean value can be written as follows: 

𝜇𝑋 = 𝐸[𝑋] = ∫ 𝑥 𝑓(𝑥) 𝑑𝑥
+∞

−∞
                  (5) 

The corresponding variance is related to the mean 

value by: 

          𝑉(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝜎𝑋
2 

= ∫ (𝑥 − 𝜇𝑋)2 𝑓(𝑥) 𝑑𝑥
+∞

−∞  

 

= ∫ 𝑥2 𝑓(𝑥) 𝑑𝑥
+∞

−∞
− 𝜇𝑋

2                             (6) 

We define also for two others stochastic variables the 

relations: 

     𝐸[𝑋 − 𝑌] = 𝐸[𝑋] − 𝐸[𝑌] = 𝜇𝑋− 𝜇𝑌                  (7) 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[𝑋𝑌] − 𝜇𝑋𝜇𝑌                      (8) 

If  𝑋  and  𝑌  are independent variables, a zero 

correlation imply:  𝑐𝑜𝑣(𝑋, 𝑌) = 0 and we obtain: 

 

𝑉(𝑋) = 𝐸[(𝑋 − 𝜇𝑋)2] 
= 𝐸[(𝑋 − 𝜇𝑋)(𝑋 − 𝜇𝑋)] = 𝑐𝑜𝑣(𝑋, 𝑋)                     (9) 

                                                                                              

                       

    𝑉(𝑋 − 𝑌) = 𝑉(𝑋) − 2 𝑐𝑜𝑣(𝑋, 𝑌) + 𝑉(𝑌) 

= 𝑉(𝑋) + 𝑉(𝑌)                                                   (10) 

The two cited operating stresses are independent 

variables. We have then a zero correlation between them 

in the difference as in (10). Therefore, the square SD 

standard deviation of the security margin becomes: 

𝜎𝑚
2 = 𝜎𝑆𝑅𝐶

2 + 𝜎𝑠𝑒𝑞𝑢𝑖𝑣
2                   (11) 

where, 𝜎𝑚  is the standard deviation of security margin, 

𝜎𝑆𝑅𝐶
 is the standard deviation of RC strength and 𝜎𝑠𝑒𝑞𝑢𝑖𝑣

 

is the standard deviation of an ideal equivalent Von Mises 

maximum computed stress. 

The security margin mean value is: 

𝜇𝑚 = 𝜇𝑆𝑅𝐶
− 𝜇𝑠𝑒𝑞𝑢𝑖𝑣

             (12) 

here, 𝜇𝑆𝑅𝐶
 and 𝜇𝑠𝑒𝑞𝑢𝑖𝑣

 are the mean value of RC strength 

and the mean value of ideal equivalent Von Mises stress, 

respectively. 

The limit value 𝑚 = 0 gives the boundaries [0: 6𝜎𝑚] 
such that we have the following data range repartition: 

𝑚 = 𝜇𝑚
± 3𝜎𝑚                       (13) 

The density curve has symmetry of  3𝜎𝑚  around the 

mean value 𝜇𝑚. 

Let be the variable change for the reduced central 

normal probability law: 

              𝑧 =
𝑚−𝜇𝑚

𝜎𝑚
                        (14)  

In practice, 𝑧  values are tabulated for the normal 

probability law and 𝑚 = 𝑁(𝜇𝑚 , 𝜎𝑚)  where 𝑚  is a 

selected security margin value. 

It is obvious that for  𝑚 = 0  we have: 

      𝑧 =
𝜇𝑠𝑒𝑞𝑢𝑖𝑣

− 𝜇𝑆𝑅𝐶

√𝜎𝑆𝑅𝐶
2 +𝜎𝑠𝑒𝑞𝑢𝑖𝑣

2
                    (15) 

For  𝑖 = 1 𝑡𝑜 𝑛  discrete values, we get: 

 𝜇𝑋 =
∑ 𝑥𝑖

𝑖=𝑛
𝑖=1

𝑛
                       (16) 

And:                       

𝑉(𝑋) = ∑ (𝑥𝑖 − 𝜇𝑋)2
𝑖=𝑛

𝑖=1
 

= ∑ 𝑥𝑖
2𝑖=𝑛

𝑖=1 + 𝜇𝑋 ∑ 1𝑖=𝑛
𝑖=1 − 2𝜇𝑋 ∑ 𝑥𝑖

𝑖=𝑛
𝑖=1          (17) 

Then: 

𝑉(𝑋) = ∑ 𝑥𝑖
2𝑖=𝑛

𝑖=1 − 𝑛(𝜇𝑋)2            (18) 

RC is a specific material equivalent to a heterogeneous 

concrete paste with reinforcement steel. If we measure 

with experiments several times the strength of this 

material, we obtain several statistical values on these 

samples. 

To get the unknown RC material strength standard 

deviation of the specific material made from 

reinforcement steel, sands, gravels and cement, one has to 
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calculate the mean value of these samples and the 

corresponding standard deviation. 

For given 𝑛  experimental strengths values 𝑥𝑖 = 𝑆𝑅𝐶𝑖
, 

the following strength characteristics are calculated using: 

 𝜇𝑆𝑅𝐶
=

1

𝑛
 ∑ 𝑆𝑅𝐶𝑖

𝑖=𝑛
𝑖=1                         (19) 

𝑉(𝑆𝑅𝐶 ) = ∑ (𝑆𝑅𝐶𝑖
)2𝑖=𝑛

𝑖=1 − 𝑛 ( 𝜇𝑆𝑅𝐶
)

2
         (20) 

Such that: 

 𝜎𝑆𝑅𝐶
= √𝑉(𝑆𝑅𝐶 )                       (21) 

The selected computed maximum equivalent stress 

characteristics are obtained with the following method: 

For a selected time step iteration of the dynamic analysis, 

one gets  𝑝   neighborhood equivalent stresses values 

around a detected critical zone among the computed 

stresses. Consequently, we get: 

𝜇𝑠𝑒𝑞𝑢𝑖𝑣
=

1

𝑝
 ∑ 𝑠𝑒𝑞𝑢𝑖𝑣 𝑖

𝑖=𝑝
𝑖=1                         (22) 

       𝑉(𝑠𝑒𝑞𝑢𝑖𝑣) = ∑ (𝑠𝑒𝑞𝑢𝑖𝑣 𝑖
)2𝑖=𝑝

𝑖=1 − 𝑝 (𝜇𝑠𝑒𝑞𝑢𝑖𝑣
)

2

     (23) 

 

Such that: 

      

𝜎𝑠𝑒𝑞𝑢𝑖𝑣
= √𝑉(𝑠𝑒𝑞𝑢𝑖𝑣)                    (24) 

III. PRACTICAL EXAMPLE 

Let 𝐸  be the event of 𝑚 ≥ 0.01 , the corresponding 

reliability is obtained as follows: 
 

𝑅 = 𝑃(𝐸) = 𝑃(𝑚 ≥ 0.01) 
 

If 𝑆𝑅𝐶 = 66.0197 𝑀𝑃𝑎  and 𝑠𝑒𝑞𝑢𝑖𝑣 = 32.9000 𝑀𝑃𝑎 

Ref. [1], then we get: 

 

𝜇𝑚 = 66.0197 − 32.9000 = 33.1197 𝑀𝑃𝑎   
 

If we assume that 𝜎𝑚 = 11.0399 𝑀𝑃𝑎 then we have  

 

𝑧 =
0.01 − 𝜇𝑚

𝜎𝑚

= −2.999 

 

and  𝑃(𝐸) = 𝑃(𝑍 ≥ −2.999) = 1 − 𝑃(𝑍 < −2.999) =
𝑃(𝑍 < +2.999) 

 

Tabulated values give: 
 

𝑃(𝑍 < +2.99) = 0.99861 

𝑃(𝑍 < +3.00) = 0.99865 

𝑃(𝑍 < +2.999) = 0.99861 + 0.9
∗ (0.99865 − 0.99861) = 0.998646 

 

This is obviously a very reliable case for the imposed 

security margin value. If we set  𝑆 = 𝑆𝑅𝐶   and  𝑠 = 𝑠𝑒𝑞𝑢𝑖𝑣   

one gets the following repartitions curves as in Fig. 1 of 

equivalent operating stress and RC material strength 

stress. 

 

Figure 1. Repartitions curves of equivalent operating stress and RC 
material strength stress 

 

Where the cited means stresses and their random 

corresponding values can generate a tolerated 

interference due to stochastic phenomena as a possibility 

of defectiveness. The means values must agree for  

𝜇𝑆 ≥ 𝜇𝑠 condition and their intersecting stochastic range 

values correspond to probabilistic defectiveness. 
 

IV. CONCLUSION 

We have introduced in this research work an efficient 

method to perform the stochastic stresses characteristics 

in order to check and improve the structural health using 

the stochastic security margin variable. Unpredictable and 

stochastic phenomena like natural disasters under severe 

loadings are quantified in this research and the structural 

lifetime period can be handled and increased. 

Experiments to determine the structural stochastic 

characteristics for each most important specific structure 

are a recommended process. The practical RC strength 

stochastic characteristics and structural security margin 

reliability of a specific designed structure are also 

performed. 
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