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Abstract—This study presents a machine learning-based 

approach to detect damage in mooring lines supporting a 

floating offshore platform that is installed to collect 

submarine crude oil. The proposed approach for damage 

detection using a convolutional auto-encoder can be 

implemented in three steps: data acquisition, model learning, 

and model update. The time series data used for damage 

detection are measured from the environment and the 

floating offshore platform but not mooring lines due to 

affordability and efficiency of both installation and 

maintenance of the sensors on the offshore structure. 

Therefore, it is expected that the approach proposed in this 

study can be applied using only data obtained from the 

structure in an actual environment.  

 

Index Terms—damage detection, offshore, mooring lines, 

convolutional auto-encoder 

 

I. INTRODUCTION 

Floating offshore platforms, which are one of 

infrastructure installed mainly for extraction of crude oil 

buried in the sea floor, are located above the sea and 

move continuously due to currents and wind. To 

minimize this movement, floating offshore platforms are 

fixed on the seabed using mooring lines. These mooring 

lines are an important factor for the safety of floating 

offshore platforms, thus their damage should be 

monitored in real time. 

In order to secure the safety of mooring lines, there are 

two approaches, which are used to directly detect damage 

to mooring lines using images and videos [1, 2], as well 

as indirectly by analyzing the acoustic, strain, and 

displacement data obtained by measuring the motion of 

mooring lines or the platform [3-5]. 

Since the mooring lines are installed under the sea, it is 

difficult to detect internal damage via direct detection. In 

some cases, it is difficult to estimate external damage if 

there is a large amount of foreign matter covering the 

lines. On the other hand, indirect damage detection using 

measurement data can be used to detect external and 

internal damage. Therefore, indirect damage detection 
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approaches that monitor measurement data of a floating 

offshore platform and a mooring line in real time is 

widely used and studied. 

Recently, several techniques for estimating mooring 

damage based on machine learning were developed to 

effectively analyze measurement data obtained by 

monitoring structures [6,7]. These machine learning-

based damage detection approaches are mainly based on 

artificial neural networks (ANNs), which use supervised 

learning. In general, supervised learning is a method 

which requires data relating cause and effect, so it 

requires a lot of data and corresponding labels for training 

a machine learning model [8]. 

From the perspective of detecting damage in mooring 

lines, labels are data that indicate the damage location at 

the moment when various measurement data are obtained 

in real time. In particular, training a machine learning 

model capable of detecting various damage conditions 

requires a large amount of data that reflect different levels 

of damage on the mooring line. However, in order to 

produce such data in a real environment, it is necessary to 

destroy several parts of the mooring line, which can 

jeopardize the safety of the structure and, even if possible, 

it is very costly. 

According to this limitation, these machine learning-

based damage detection approaches for mooring lines 

currently use simulation data. However, in the case of a 

floating offshore platform, which is heavily influenced by 

unpredictable environmental loads like wind and ocean 

currents, it is unclear that the machine learning model 

trained using simulation data can accurately match real 

data. Therefore, the supervised learning-based damage 

detection approach which cannot use real measurement 

data seems to have limitations in its applicability. 

This limitation can be addressed by using an 

unsupervised machine learning-based damage detection 

approach. Unlike supervised learning, unsupervised 

learning has the advantage that it can be trained with only 

measured data from the floating offshore structure. Based 

on this advantage, this study aims to propose a damage 

detection approach based on unsupervised learning and 

convolutional auto-encoder (CAE), an unsupervised 

machine learning algorithm (i.e., deep learning algorithm). 
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II. CONVOLUTIONAL AUTO-ENCODER 

A CAE is a deep learning technique that uses a 

convolutional layer in a convolutional neural network 

based on an auto-encoder (AE) architecture. In particular, 

the data used in this study is consists of several variables. 

For such multivariate data, using the convolutional layer 

creates and uses many features representing relationships 

among variables can be useful when developing a deep 

learning model [8]. Therefore, in this study, CAE using 

convolution layer based on AE was used for the machine 

learning algorithm. 

Meanwhile, CAE follows the general performance of 

an AE, thus, this section aims to explain the principle of 

an AE. An AE uses different methods depending on the 

application, such as anomaly detection to identify 

abnormalities in data or de-noising to remove noise in 

data. The purpose of this study is to detect damage 

(abnormalities) in mooring lines, thus, we focus on 

anomaly detection. 

An AE uses a neural network designed for 

unsupervised learning by connecting two artificial neural 

networks, called an encoder and a decoder, as shown in 

Fig. 1. The encoder is used to transform the general 

characteristics of the data by using dimension reduction, 

and the decoder reconstructs the input data. The working 

principles of an encoder and a decoder are expressed 

mathematically in (1) and (2). 

 y = Wx + b
 
 (1) 

 z = W'y + b′ (2) 

where x is input vector, y is the latent vector calculated 

by the encoder, z is the reconstructed vector calculated by 

the decoder, W, W' are weight matrices for the encoder 

and decoder, respectively, and b, b′ are bias vectors of 

the encoder and the decoder, respectively. 

In general, training a neural network model requires 

that the output data have input data labels to calculate 

loss (error), which is an important indicator for model 

training. The most commonly used type of loss for AE 

training is mean square error, which is defined in (3). 

However, in the case of AE, the input data is reused as 

labels so that model training proceeds to confirm how 

well the input data is reconstructed. This training 

objective enables anomaly detection. 

 𝐿(𝑥, 𝑧) =  
1

𝑁
√∑ (𝑧𝑖 − 𝑥𝑖)

2𝑁
𝑖=1  (3) 

where, 𝑥𝑖 is the 𝑖 th element of the input vector, 𝑧𝑖 is the 𝑖 
th element of the reconstruction vector, and 𝑁  is the 

number of elements in the input vector. 

The basic principle of anomaly detection based on AE 

is to identify the difference between normal and abnormal 

data using the distribution of errors calculated with the 

AE model. In general, the AE model is trained using 

normal data. In the view of detecting damaged mooring 

lines, data from undamaged mooring lines are taken as 

the normal data, while data from damaged mooring line 

are taken as abnormal data. 

As training progresses, the model becomes 

progressively more capable of restoring the normal data. 

Finally, a successfully trained AE model restores the 

normal data when it comes in as input data, but it does 

not restore the input data when the input data contains 

abnormalities. The fact that the input data is not well-

restored means that the AE error is relatively large when 

abnormal data is input. Therefore, the distribution of AE 

errors when normal data is input and the distribution of 

AE errors when abnormal data is input can be compared 

and used to distinguish whether or not the mooring lines 

are damaged. 

 

Figure 1. Architecture of an auto-encoder 

III. PROPOSED DAMAGE DETECTION APPROACH 

 

Figure 2. Process of proposed damage detection approach for mooring lines of floating offshore platform 
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The process for detecting damage in mooring lines 

installed on a floating offshore platform is shown in Fig. 

2. In order to apply this process in a real environment, the 

data from the undamaged state of mooring lines must be 

distinguished from the data from the damaged state of 

mooring lines. However, it is difficult to accurately 

determine the data from the undamaged state of mooring 

lines without safety inspection of mooring lines. 

Therefore, in this approach, it is assumed that 10% (2-2.5 

years) of typical design life is the undamaged state. 

First, as shown in Fig. 2, the type of data for training 

the CAE model must be defined in order to reflect the 

actual installation environment. Table I lists the typical 

variables of measurement data on a floating offshore 

platform and the locations obtained the variables. As 

shown in table1, in views of the locations for measuring 

variables, it can be divided into three types (variables 

from the mooring lines, variables from the platform, and 

variables from the environments). However, since the 

sensors for the location of mooring lines need to be 

installed underwater, it is difficult and expensive for 

installing and maintaining these sensors. Therefore, in 

this study, the CAE model should be trained without 

using the mooring line data as this model shows whether 

the mooring lines are damaged or not.  

On the other hand, several sensors showing the 

behavior of the floating offshore platform have the 

advantage of being easy to install and maintain. Since the 

behavior of such a floating structure is affected by 

damage to the mooring lines, it is possible to trace the 

presence of mooring line damage using a CAE. Therefore, 

only the movement of the floating structure, wind, and 

wave data are used in the proposed approach. 

Second, the CAE is trained using the acquired normal 

data obtained from the undamaged state of mooring lines. 

Since the acquired data is time series data, the CAE 

architecture should also be set to match the time series. 

Fig. 3 shows the concept of proposed CAE architecture in 

this study. Time series data usually tends to change 

significantly due to the large white noise over a short 

period of time. In other words, a short measurement 

period makes damage detection in mooring lines with a 

CAE rather difficult. To solve this problem, the 

maximum sway period of the floating offshore platform 

can be used to select an appropriate measurement time for 

the input data to be used in the CAE. Therefore, using 

time series data with a domain that is larger than the 

maximum sway period is an easy method for 

understanding the behavior of the floating offshore 

platform. 

When designing the architecture of the CAE, the 

maximum sway period of the floating offshore platform 

should be determined using a fast Fourier transform. The 

domain of the time series should be longer than the 

maximum sway period when used as the input data in the 

CAE. During the CAE model training process, the time 

series data is used for the input matrix and the output 

matrix of CAE architecture and the hyperparameter of the 

CAE architecture needs to be adjusted. 

TABLE I.  TYPICAL VARIABLES OF MEASUREMENT DATA ON 

FLOATING OFFSHORE PLATFORM FROM ENVIRONMENTS, PLATFORM, 
AND MOORING LINES 

Location Variable 

Environments 

Wind loads 

Wave height 

Ocean currents 

Depth of water 

Platform 

GPS 

Orientation 

Triaxial accelerations of platform 

Triaxial displacements of platform 

Mooring Lines 

Tension force 

Triaxial accelerations of each mooring lines 

Triaxial displacements of each mooring lines 

 

Finally, real-time damage detection can be performed 

using the trained CAE. If a large amount of damage 

occurs to the mooring lines, the pattern in the 

measurement data will change, and the CAE error will 

increase. An alert can be received in real time, allowing 

worker to inspect the lines for safety and perform 

maintenance. If the repair work is performed after the 

safety inspection and maintenance, it is possible to update 

the CAE based on new data from the 2-2.5 years as 

normal data. 

 

Figure 3. Concept of CAE architecture in the proposed approach 
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IV. CONCLUSIONS 

The purpose of this study was to propose an approach 

for detecting damage in mooring lines supporting floating 

offshore platforms installed to collect submarine crude oil. 

In this study, the CAE which is one unsupervised 

machine learning technique was used for detecting 

damage of mooring lines. The proposed approach 

consists of three steps: data acquisition, CAE model 

training, and model updating. This approach can be 

employed using only data obtained from offshore 

platform the actual environment so that it is affordable 

and efficient to apply this approach in practice. In 

addition, it has an advantage that it is available for all life 

cycle of mooring lines. 

On the other hand, there is a limitation in that it is 

impossible to localize damage using the approach 

proposed in this study. Locations of damage in mooring 

lines can be identified using latent variables obtained 

from the encoder in the trained CAE. This study can be 

considered as a basic study toward the development of 

damage localization techniques based on unsupervised 

learning. It is expected that damage localization approach 

using unsupervised learning can be completed within a 

short time. 
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