
A Deep Learning Approach to Automated 

Structural Engineering of Prestressed Members 
 

Ahmed A. Torky 
The British University in Egypt, ElSherouk City, Cairo, Egypt 

Email: ahmed.torky@bue.edu.eg 

 

Anas A. Aburawwash 
Canadian International College, Sheikh Zayed, Giza, Egypt 

Email: anas_abdulhakim@cic-cairo.com 

 

 
Abstract—In this paper, an implementation is presented of 

deep learning on the structural engineering of prestressed 

concrete members. Prestressed concrete beams and slabs 

are essential structural members supporting the floors of 

buildings, yet their optimum design is still a challenge for 

engineers as they struggle to design sections that adhere to 

serviceability and economical needs. Recently, the 

advancement of artificial neural networks has managed to 

propose more optimum solutions to general engineering 

applications with ease. Deep learning and grid search 

available hyperparameters can be utilized to predict 

optimum prestressing of members, without the need for 

structural engineers to produce countless analysis and 

design iterations. A simple prestressed beam is presented as 

an initial example to show the viability of neural networks 

against the traditional approaches. Two industrial examples 

of a continuous beam and a slab-beam type are added to 

demonstrate scalability of the design. 

 

Index Terms—deep learning, structural engineering, 

prestressing, artificial neural networks, economic design 

 

I.
 

INTRODUCTION
 

The emerging breed of civil structures and systems of 

changing attributes need accurate, automated, and 

optimized methods to design structural members in more 

suitable periods of time without the hassle of iterative 

design. Recent reinforced concrete constructions have 

pursued smaller and more economic section designs that 

weigh less. Thus, the philosophy of prestressing members 

was implemented in design codes [1]. The advantages of 

prestressed concrete members are: 


 

Wider spans with a reduction in cross-section. 


 

Improved member deflection behavior. 


 

Reduction in crack propagation. 


 

More economic structures. 

Design of prestressed structural members is highly 

nonlinear and dependent on many factors, yet all its 

features can be quantified and assessed. Deep learning, a 

branch of artificial intelligence, works well with 

nonlinear systems [2] to produce optimized predictions.  

Deep learning has been successfully used in structural 

engineering, such as in predicting deformations of the 

well-known ten-member truss [3]. Neural networks have 

also been used to predict concrete compressive strength 

based on extensive and available lab data [4]. Other 

implementations of neural networks are for the analysis 

of structural frames, where unsupervised training 

concepts were used [5]. The following paper also reviews 

past use of neural networks in structural engineering [6] 

prior to improvement of computing. 

This paper revises briefly concepts of deep learning 

and artificial neural networks in the section 2. A 

framework is then proposed in section 3 for optimized 

design of prestressed beams. Section 4 provides 

verification examples of the proposed framework and 

furthermore industrially relevant examples. 

II. NEURAL NETWORKS 

A. Network Architecture 

A deep learning neural network comprises of at least 

one input layer, one output layer and several hidden 

layers in between [7]. The input layer and its nodes 

represent the predictive features, whereas the output layer 

and its nodes are the target predictions. While inputs and 

outputs can be physical values that correspond to actual 

data, the values in the hidden layer aren’t something to 

observe directly. Nevertheless, each node in any hidden 

layer represents an aggregation of information to capture 

interactions from input data.  
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Figure 1. Neural network components. 

Forward propagation is the movement of manipulated 

information from the input layer, to intermediate hidden 

layers, then to the output layer through a multiply-add 

process. Fig. 1 shows such a fully connected architecture. 

Inputs are defined with xi, hidden nodes are ai computed 
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through the dot product of X {x1, x2, x3} and weights W1i. 

The output of the hidden layer is bi, calculated by 

multiplying ai with an activation function σ (e.g. sigmoid, 

tanh, softmax, softplus, relu, and selu). Finally, the output 

in the final layer is calculated through the dot product of 

B {b1, b2, b3} and weights W2i.  

A neural network must be iteratively and continuously 

trained until it predicts viable and near accurate results. 

This could be achieved by modifying hyperparameters of 

the network, which will be discussed in section 2.2. 

Accuracy, however, is calculated by the mean squared 

error function (MSE) of the output of the network 

compared with the expected target. 

In supervised learning, all weights used in the forward 

propagation can yet be optimized through the 

backpropagation. Backpropagation takes the error from 

the output layer backwards through the hidden layers 

towards the input layer, modifying weights sequentially. 

Weight functions can be updated with several readily 

available optimizers (e.g. gradient descent, Adagrad, 

Adam) to find a local minimum of that function. The 

overall process becomes: 

 Configure a model 

 Process the forward propagation 

 Go back one layer at a time 

 Backpropagate from output to hidden layers 

sequentially 

 Update weights with each epoch. 

B. Grid Search with Hyperparameters 

There are several parameters to configure for a neural 

network, and thus these hyperparameters are the most 

crucial part of deep learning model optimization. These 

hyperparameters are: 

 Epochs count 

 Number of hidden layers 

 Number of neurons 

 Learning rate and training optimization algorithm 

 Neuron activation functions 

 Batch size 

Tuning of deep learning models is now made easy with 

the use of the Python deep learning library Keras [8]. As 

different purpose machine learning models have different 

optimized hyperparameters, it is only convenient to do a 

full grid search and study the effects of these parameters 

on model performance.  
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Figure 2. Strands and tendon in a prestressed concrete beam. 

III. PRESTRESSING BEAM MODELS 

A. Prestressed Concrete Theory 

Prestressing of concrete beams greatly reduce its 

dimensions, as the capacity of the beam is increased. The 

prestressing steel strands are accumulated in separate 

tendons and exert compressive stresses along the cross-

section. This design prevents cracks from developing 

along the top and bottom fibers of the section. Fig. 2 

shows the tendon profile along an arbitrary concrete 

beam.  

A structural engineer would propose dimensions of 

any given beam under a loading case of bending moment, 

along with the number of strands in the prestressing 

tendons and their eccentricity from the centerline. Top 

and bottom stresses of the member are calculated at the 

midspan and compared to the maximum allowable 

concrete stresses. The Egyptian Code of Practice (ECOP) 

[9] specifies the compressive stresses maximum as 

0.45  and the maximum tensile stresses of concrete as 

0.22√ , where  is the ultimate compressive strength 

of concrete. The top and bottom stresses are calculated 

using the equations (1) and (2). 

 

              (1) 

                   (2) 

 (Sign Convention) (+) Compression Stress, (-) Tension Stress  

In which, 

 , is the stress of sections’ top fibers 

 , is the stress of sections’ top fibers 

, is the prestressing jacking force of the tendon 

, is the cross-sectional area  

 , is the tendon eccentricity measured form the centroid 

of the section  

 , is the section modulus at the top 

    , is the flexural moment due to external loads at the 

section 

, is the section modulus at the bottom 

It is possible to predict approximately the amount of 

prestressing steel from P in equations or the eccentricity 

of tolerable prestressing steel. This study makes use of 

the later concept to produce two new equations 

reformulated from equations (1) and (2) in separate cases 

where either the top or bottom stresses reach their 

maximum allowable stresses.  

 

                 (3)  

                (4) 

After calculating both  and  from equations (3) and 

(4), the least of both produces stresses in both the top and 

bottom fibers that are acceptable. The bigger of both 
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eccentricities will result in exceeding the maximum 

tensile stresses in one of the extreme fibers. Infinite 

amounts of prestressed sections can now be calculated 

from the above formulation using any programming 

language. 

TABLE I.  SAMPLE DATA OF THE OPTIMUM PRESTRESSED BEAMS 

AND THEIR PARAMETERS (N = 500,000) 

# 
Depth 

(mm) 

Width 

(mm) 

Bending 
moment 

(kN.m ) 

Eccentricity 

(mm) 

Number 
of strands  

1 860 300 50 280 1 

2 1500 750 1300 715 7 

3 1200 600 210 650 12 

… … … … … … 

n 2000 1000 1900 365 20 

 

B. Optimum Big Data for Prestressed Beams 

Using equations (3) and (4), several thousands of 

optimum prestressed data can be computed. As the neural 

network has higher affinity to learn correctly from bigger 

data, tremendous amounts of sections and their optimum 

prestressing with different cases of loading (bending 

moments) can be produced quickly. A Fortran code is 

written to process and compute this data, calculating 

500,000 sections in less than a minute. The pseudo code 

for this program is shown is shown below. Fortran 

remains to be one of the fastest programming and 

computing languages, however, it lacks readily available 

machine learning libraries.  

 

Algorithm 1: Fortran pseudo code 

A sample data is listed in Table I. The beam sections’ 

depths ranged from 600mm to 2000mm, whereas the 

widths ranged from 300mm to 1000mm. The internal 

forces (bending moment) in the sections started from 50 

kN.m up to 1900 kN.m, whereas prestressing tendon 

eccentricities were at their maximum for equivalent 

economic choices of number of strands. The output 

computed was the minimum number of strands required 

by each configuration of input features. Note that the 

number of strands is based on the area of prestressing 

steel that is required, which is computed from the 

prestressing jacking force P. This data works for either 

transfer or service loading. 

C. Model 1 

The first proposed trained neural network model has 

section depth, section height, bending moment, and 

eccentricity as the predictors, while the number of strands 

as the target. The Python pseudocode is presented, 

Displaying all the steps to build a model, import data, 

train the model, make predictions with it and plotting 

performance of the network all with Python and Keras. 

An example of the trained model is shown in Fig. 3. 

Training of the network with different hyperparameters 

has shown that the best activation function is Softplus 

and the best optimizer is Adam. Three hidden layers with 

16 nodes each was the best configuration that can be 

achieved. The MSE is shown in Fig. 4 to decrease rapidly 

with the increase of epochs, and as the data is large and 

strongly correlated, only a few epochs are required. 

Training was compared with 3 and 4 hidden layers. 

From Fig. 5, four hidden layers with 16 neurons give the 

best performance and thus the least model training time 

expense.  
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Figure 3. Neural network for model 1. 

 

Figure 4. Mean square error for a training Model 1 with 
(4−16−16−16−16−1). 

1) Enter Number of Strands 
2) Enter Section Geometry  

3) Enter Section Bending Moment  

Repeat the following  
4) Call Eccentricity Subroutine 

5) Compute e1 and e2 and corresponding M1 and M2  
6) Choose minimum of M1 and M2 as Msection  

7) Call Stresses Subroutine 

8) Compute top and bottom stress   
9) Call PickedEcc Subroutine  

10) Pick eccentricities within allowable stresses  
11) Call PickBestEcc Subroutine  

12) Pick best eccentricity  

13) Write Features: Depth, Width, Moment, Eccentricity, Number 
of Strands 

14) End 
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Algorithm2: Python pseudo code 

  

 

Figure 5. Training of model 1 using 3 and 4 hidden layers. 

D. Model 2 

The second proposed trained neural network model is 

achieved to predict eccentricities of continuous beams 

where the number of strands is already known and 

enforced from the peak value of one section of the beam. 

The model has section depth, section height, bending 

moment, and number of strands as the predictors, while 

the eccentricity as the target. Training of the network was 

also completed with a similar configuration and achieved 

similar performance. 
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Figure 6. Neural network for Model 2. 

E. Proposed Design Framework 

An automated framework to designing simple beams 

to a multitude of continuous beams is displayed in Fig. 6. 

Material properties of concrete and prestressing steel is 

entered according to design codes and industrial 

availability. Massive data of optimized designs of 

prestressed beams are produced with the Fortran code, 

and data is exported for training of Model 1 and Model 2. 

If a beam is simple then only Model 1 is deployed, 

whereas continuous beams utilize the full capacity of the 

flow chart displayed in Fig.7.  

 

Training Model 1 and Model 2. 
Hyper-parameters in each are 

optimized using the Python Code 
and Keras library.

Number of strands in new 
prestressing beam are predicted 

with Model 1 using maximum 
bending moment in beam (apply 

rounding up to the nearest integer)

Extract remaining bending moments 
from beam to predict eccentricities 

with Model 2.

Yes

Remaining unknown eccentricities 
along the beam�s length are 

predicted using Model 2.

No

Simple

Continuous

Create big data of optimally 
computed prestressed beam 

sections using the Fortran Code to  
train Model 1 and Model 2. Material 

properties are assigned.

Type of
 beam?

Are all 
prestressed 

beams 
designed?

Prestressed beam(s) is/are designed. 

  
Figure 7. Proposed framework to optimize design. 

IV. NUMERICAL EXAMPLES 

This section provides numerical validation of a simple 

prestressed beam and two industrial prestressing 

applications. The proposed framework in section 3.5 is 

implemented to automate the design of all beam(s) 

section(s) with maximum positive and negative moments 

using deep learning. 

A. Simple Beam 

The example presented here is a benchmark example 

presented in reference [10], which has been used by 

structural engineers in Egypt as it gives the best practices 

in design with the ECOP. The beam material properties 

and allowable stresses are in Table 2. Section dimensions 

Fig. 8 are 300mm (width) x 1300mm (depth), and a 

bending moment of 878.64 kN.m is applied to it. 

Eccentricity is set at its maximum (100mm from the 

bottom fibers) to allow for a concrete cover. The 

prestressing force computed translates to 13 strands (area 

of 140mm
2
 each) in the tendon, while the proposed 

neural network predicts 8 strands are only necessary. 

The method traditionally uses equations (1) and (2) to 

attain the maximum prestressing force, however, it 

1) Import necessary modules 

2) import numpy  
3) import matplotlib 

4) import keras: layers, models 
5) np.loadtxt: predictors,target 

6) n_cols = predictors.shape[1] 

7) model = Sequential()  
8) model.add(Dense(16, activation='softplus',input_shape = 

(n_cols,))) 
9) model.add(Dense(16, activation='softplus')) 

10) model.add(Dense(16, activation='softplus')) 

11) model.add(Dense(16, activation='softplus')) 
12) model.add(Dense(1)) 

13) model.compile(adam, loss, accuracy]) 
14) model_1 = model.fit(predictors,target,epochs=20, 

batch_size=20 ,validation_split=0.2) 

15) np.loadtxt:data_to_predict_with 
16) predictions = model.predict(data_to_predict_with) 

17) model.summary() 
18) Plot the points using matplotlib 

19) plt.plot(model_1.history['loss'],'r') 

20) plt.xlabel('Epochs') 
21) plt.ylabel('Mean Squared Error, MSE') 

22) plt.show() 
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cannot predict the optimum state of stresses along the 

section due to the equating the equations with maximum 

allowable stresses. Fig. 9 shows the different stress 

diagrams in both methods. The less the number of strands 

in the tendon, the less will be the weight of the section 

and the price of prestressing materials.  

TABLE II. PARAMETERS FOR THE SIMPLE BEAM EXAMPLE 

Material Properties & Allowable Stresses 

Normal Strength Concrete,  
 

Transfer Concrete Strength,  
 

Prestressing Steel Yield stress,  
 

Ultimate stress,  
 

Compression Stress,  
 

Tension Stress,  
 

A

A

b

e

h

Aps

Section A-A

Mw

L

Figure 8. Geometry of the simple beam example. 

 

Figure 9. Comparison of section stresses. 

B. Continuous Beam 

Industrially in construction, reinforced concrete beams 

are usually continuous over several supports. The 

framework is tested on the continuous beam presented in 

Fig. 10. The same material properties are assumed as that 

of the previous example. Mainly three sections would 

produce the maximum positive and negative moments, 

defined by Sec-1, Sec-2, and Sec-3. The absolute 

maximum of the three is used for inference with Model 1 

to predict the number of strands for the overall beam, as 

only one tendon with a constant number of strands is 

more economical. Then the other two sections’ features 

are used with Model 2 to predict the eccentricities of the 

already enforced number of strands. Table 3 presents the 

final design of the prestressed continuous beam. 

C. Slab-beam Type 

More accurately, a beam usually support loads from an 

overlying structural floor/slab. This example uses the 

boundary element software developed by the first author 

[11](PLPAK) to solve shear deformable plates under 

bending to attain bending moments on the beams.        

Fig. 11 demonstrates the 3D geometry of a practical 

example. The slab has dimensions of 32mx32m, its 

thickness is 0.3m, and a uniform gravitational load of 

5kN.m is applied on it. All beams have a dimension of 

0.3mx0.8m, whereas columns are 1.0mx1.0m. 

300 mm

e

1200 mm

Aps

Cross Section

at support

24 m24 m24 m24 m

9 kN/m

432 kN.m 432 kN.m

432 kN.m

518.4 kN.m518.4 kN.m

324 kN.m 324 kN.m

Sec 1 Sec 2

Sec 3  

Figure 10. Geometry and loading of the continuous beam. 

TABLE II.  OPTIMUM DESIGN OF THE CONTINUOUS BEAM. 

Cross 
Section 

Bending 
Moment 

(kN.m) 

Number of 
Strands 

e (mm) Stresses at fibers, 
MPa 

Status 

Top  Bottom 

Sec-1 -518.4 5 Model 1 500↑ 2.05 3.23 Safe 

Sec-2 -432.0 5 Model 2 435↑ 1.89 3.01 Safe 

Sec-3 324.0 5 Model 2 295↓ 2.85 2.03 Safe 

Slab
Beam

Column

 

Figure 11. Geometry of the slab-beam type example. 

Bending moment results on beams are displayed in  

Fig. 12 and listed in Table 4. For simplicity, on the two 

sections on the inner most beam are used for calculating 

prestressing need.  

Sec-1

Sec-1

Sec-2

Sec-2

Figure 12. Bending moment results of beams. 
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The proposed framework was implemented again. A 

tendon of 10 strands is required to prestress this 

continuous beam. 

TABLE III.  OPTIMUM DESIGN OF THE CONTINUOUS BEAM IN THE 

SLAB. 

Cross 

Section 

Bending 

Moment 

(kN.m) 

Number of 

Strands 

e (mm) Stresses at fibers, 

MPa 

Status 

Top Bottom 

Sec-1 -716 10 Model 1 350 ↑ 5.35 7.34 Safe 

Sec-2 454 10 Model 2 280 ↓ 6.24 4.41 Safe 

V. CONCLUSIONS 

This work proposed a deep learning approach to 

optimize structural engineering of prestressed beams. Big 

data of optimized prestressed beams was computed using 

a Fortran code of 500,000 samples, five features each. 

Two neural networks were trained on the data. Model 1 

aimed at predicting the number of strands in the whole 

beam, whereas Model 2 aimed at predicting eccentricities 

of the tendon along the beam. A verification example 

showed that the framework proposed produces a much 

more economical design than traditional methods, in 

accordance with the ECP203. Two more industrial 

examples were solved with the proposed system.  

The approach to making use of deep learning in 

structural engineering will be extended to the design of 

post-tensioned slabs in the future. Machine learning can 

be applied to optimizing structural design in general. 

Further studies beyond this work can include a proposed 

framework for the optimized design structural elements 

in tall buildings under gravitational and lateral loads.  
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