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Abstract—In this study, the derivation of a simplified 

parameter ( tχ ), based on the modal analysis of reinforced 

concrete frames, is presented. This simplified parameter can 

be used as an indicator of the susceptibility to global second-

order effects as well as an amplifier to multiply first-order 

results in order to satisfactorily obtain the results of second-

order analysis. The simplified amplification factor 

formulation is based on the Rayleigh's method, virtual work 

principles and the use of generalized coordinates to 

represent the behavior of flexible structures. The main 

advantage of a formulation based on a simple modal 

analysis is that natural period of vibration can be easily 

obtained using a finite element software. The simplified 

factor tχ is developed for an equivalent cantilever beam-

column and the results compared with the values of the 

overturning moment amplification ratio obtained from first- 

and second-order analyzes performed using a finite element 

software. The results obtained demonstrate a satisfactory 

agreement between the simplified amplification factor and 

the amplification overturning moment amplification ratio.  
 

Index Terms—Second-Order Effects, Modal Analysis, 

Structural Stability  

I. INTRODUCTION 

Given an increasingly need for slender structures, 

considering global second-order effects have become 

essential during a structural analysis; the effect of vertical 

loads on the deformed shape of the structure is no longer 

negligible, requiring a much more complex structural 

analysis to determine the final design internal loadings. 

In order to determine the global second-order effects 

on a structure, different methods can be used. Among 

these methods, the most precise are the iterative methods, 

in which structural stiffness matrix is updated within each 

increment of load or displacement, as presented by 

Crisfield [1] and McGuire et al. [2]. In addition to 

                                                           
Manuscript received May 11, 2017; revised December 18, 2017. 

iterative methods, there are direct methods as presented 

by Ruttenberg [3], Wilson and Habilullah [4] and White 

et al. [5], in which simplified amplification factors, or 

reduction factors applied to the structural stiffness matrix.  

Recently, Statler et al. [6] demonstrated that the natural 

period of vibration could be used as an indicator of the 

global second-order effect for steel frames since both of 

these properties depend essentially on the mass and the 

stiffness of the structure. Further developments have 

demonstrated that this concept can be extended to 

reinforced concrete frames [7]. Reis [8] presented a study 

in which a simplified equation is derived using the 

principle of generalized coordinates and Rayleigh’s 

method, in which the generalized displacement function 

has been chosen in order to respect the essential boundary 

conditions of the problem. 

The work presented herein is a continuation of 

previous research efforts to derive a simplified equation 

based on the natural period of vibration (T), which can be 

used for reinforced concrete frame both as an indicator of 

the susceptibility to global second-order effects, as well 

as, a multiplier that amplifies first-order internal loadings 

and lead to results similar than the ones obtained through 

a second-order analysis. The main contribution presented 

herein is based on the fact that throughout the derivations 

the generalized displacement function respects the not 

only the essential, but also the natural boundary 

conditions. 

The derivation of tχ is presented and compared to a 

single bar example and a square symmetrical frame 

example; both example where modeled in SAP2000 [9] 

using the P-Delta function [10]. The total height of both 

examples are varied in order to compare the equation to a 

larger gamma of structure slenderness. The results 

demonstrate satisfactory agreement between the ratio of 

second-to-first order moments and the simplified factor 

tχ  proposed herein 
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II. DERIVATION OF AMPLIFICATION FACTOR tχ   

The parameter tχ is derived using Rayleigh’s method 

[11] for flexible conservative systems, where is possible 

to determine the natural period of vibration of a 

generalized equivalent system. The system adopted in the 

derivation is a simplified equivalent cantilever beam with 

mass and stiffness distributed uniformly along its height; 

in addition, it is considered a continuous mass equally 

spaced along the height of the system representing the 

mass of each floor. 

According to Paultre [12], the natural period of 

vibration of a flexible system can be obtained using a 

generalized coordinate system. The deformed shape of a 

flexible bar is taken as the product of two functions; one 

function describing the displacement of a convenient 

reference point of the system, which is known as the 

generalized coordinate, and another shape function 

describing the deformed position along its height, as 

presented in (1). The cantilever beam-column free-body 

diagram considered herein is depicted in Fig. 1. 

 

     tzxψ=tx,u    (1) 

 

 

Figure 1.  Equivalent cantilever beam-column representing the flexible 

system. 

Using the virtual works principle, the following 

equation can be written 

 

       .tp=tzk+tzk+tmz GE    (2) 

 

Where m  is a generalized mass, Ek  is the generalized 

elastic stiffness and Gk  is the generalized geometric 

stiffness of the system. Thus: 
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Applying Rayleigh’s method [11] to this problem, the 

angular frequency is given by: 
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The shape function chosen herein for the cantilever 

beam-column with axial and shear forces uniformly 

distributed respects the essential and natural boundary 

conditions of the problem, equation (8).  
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Substituting (8) into (7), neglecting the geometric 

stiffness variation, and considering the elastic modulus (E) 

and the inertia moment (I) constant along the height of 

the cantilever beam element, the angular frequency is 

given by: 
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Where, im  is the mass of each floor, which is also 

equal to pm . On the other hand,  ii xψ=ψ  and 

n

H
i=xi . By substituting the terms described above in 

the summation found in the denominator of equation (9), 

we have: 
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Therefore, the angular frequency of the system is given 

by: 
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Given the angular frequency, equation (11), it is then 

possible to calculate the natural vibration period of 

vibration of the flexible system as: 
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The distributed mass of the columns (

_

m ) and also the 

concentrated mass of the floors ( pm ) can be given as a 

function of the total weight of the structure ( P ) and 

weight of each floor ( stoP ): 
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Substituting (13) into (15) and the product into (12), 

we have: 
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According to Franco and Vasconcelos [13], the ratio 

between second order and first order bending moments 

( 12 /MM ), as defined in the Brazilian Standard [14] for 

reinforced concrete design, can be given by: 
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The parcel 2ΔM is the bending moment caused by the 

vertical loads acting on the deformed shape of the 

structure and 1M  is the overturning moment due to 

lateral loads. Thus, equation (14) can be rewritten as: 
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Where iu  is the horizontal distance between the 

deformed and undeformed shape, where a vertical force 

iP is applied. The displaced shape is given by a linear 

analysis, where a horizontal force, Fi, is applied at the 

respective height, ih . In the case of a cantilever beam-

column with an uniformly distributed lateral load F , the 

deformed shape of the structure from a linear analysis can 

be given by: 
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In addition, it shall also be mentioned that: 
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Substituting (24) and (25) in (17), the ratio between the 

second and first order bending moments is given by: 
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As expected, the ratio between 2M  and 1M  is 

mainly a function of the mass and the stiffness of the 

structure. For any frame, the only parameter that needs to 

be determined in (26) is the global stiffness ( EI ). In 

order to overcome the difficulty of determining the global 

stiffness ( EI ), an equivalent stiffness ( EI ) is obtained 

from the using (16), thus: 
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Substituting in (26) the equivalent stiffness obtained in 

(27), the amplification parameter tχ  is given by: 
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This equation can be rewritten as: 
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Where: 
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In order to simplify the equation of the parameter tχ , 

a verification of the importance of each term in the 

numerator and in the denominator of the parameter 

nμ was carried out. Fig. 2 and 3 depicts the 

representativeness of each term in the numerator and in 

the denominator of the expression of nμ . It is important 

to note that pavk is equal to 1, which is the value that 

leads to greater representativeness of the terms with 

smaller order.  

Note in Fig. 2 that the first term in the numerator 

represents more than 90% of the total value when the 

number of stories is greater than or equal to three. The 

parcels in the denominator are depicted in Fig. 3; note 

that the first two terms of the polynomial equation 

represent more than 90% of the total value when the 

number of stories is greater than or equal to two. Thus, 

the parameter nμ  can be simplified as follows: 
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Substituting (31) into (29) the following expression for 

the simplified factor tχ  can be obtained, where pavk  

can vary from 0.5 to 1.0; however, the authors consider 

0.8 a value that represents well common practice. 
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Figure 2.  Sensibility analysis for the terms in the numerator of n. 

 

Figure 3.  Sensibility analysis for the terms in the denominator of n. 

III. CASE STUDY 

In order to validate the accuracy of using the proposed 

simplified parameter, two case studies were carried out. 

The first model studied consists in a simple equivalent 

bar with concentrated masses representing the stories, and 

the second model consists in a simple frame with square 

floor plan. In both cases, the analyses are performed 

varying the number of stories from 1 to 15, resulting in 

30 analyzes, for one orthogonal direction. 

The structural analysis are performed in the finite 

element software SAP2000 [9]. The structural analyses 

are subdivided in: (i) modal analysis, (ii) first-order 

analysis, and (iii) second-order analysis. The modal 

analysis is necessary to obtain the natural period of 

vibration used to determine tχ , while first and second-

order analysis are necessary to validate the method 

proposed herein. During the analysis, second-order 

effects are determined based on the method proposed by 

Wilson and Habibullah [10] using the P-Delta analysis 

from SAP2000. 

The first case studied herein is a reinforced concrete 

cantilever beam-column with a square cross-section with 

1.85 m sides. As one can see, the side size of the cross-

section is unrealistic; however, the great size side is an 

artificial method to lead the model to a great bending 

stiffness and, thus, a small, but realistic, horizontal 

displacement. Along the height of the model, a 

concentrated load is applied every 3 m, to simulate the 

mass of each story, additionally to a uniformly distributed 

load representing the self-weight of the beam.  

The second case studied herein is a fictitious 

tridimensional single bay reinforced concrete frame with 

a square floor plan as depicted in Fig. 4 and Fig. 5. The 

same dimensions for the structural members are adopted 

along the height of the frame (see Fig. 4) and no 

inference about cracking is considered. A value of 7.0 

kN/m
2
 is uniformly applied on the slabs to represent the 

total vertical gravitational load and a lateral uniformly 

distributed load of 1.39 kN/m
2
 is applied along the height 
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of the frame in one of the orthogonal directions. The 

natural period of vibration, as well as, first and second-

order overturning moments are obtained for all the 

columns in the frame; the ratio 12 /MM is compared to 

the parameter tχ  calculated for different number of 

stories, but same floor plan.  

It is worth mentioning that we consider that the most 

loaded column, leeward column, is most representative of 

the model. The ratio between first and second-order 

overturning moments is determined at the ends of the 

column being analyzed. 

 

 

Figure 4.  Floor plan for the square reinforced concrete frame analyzed 
(units in cm). 

IV. RESULTS 

In order to determine the accuracy of the method 

proposed herein, the natural period of vibration values 

obtained using equation (12) are compared to those 

obtained by Finite Element (FE) analysis; Fig. 6 depicts 

the comparison for the single equivalent cantilever beam-

column case. As one can see, FE and simplification 

equation lead to very similar results, which demonstrates 

the robustness of the method proposed herein. 

 

 

Figure 5.  Isometric view of the square reinforced concrete frame. 

In Fig. 7, the values of the ratio between 

12 / MM obtained from the results of first-order and 

second-order FE analysis are compared with the values of 

the simplified amplification factor tχ  in the case of the 

equivalent cantilever beam-column. As depicted in Fig. 7, 

the simplified amplification factor are in satisfactory 

agreement with the ratio of second to first-order 

overturning moments obtained in the FE models. 

 

 

Figure 6.  Natural period of vibration in function of the number of 
stories for the equivalent cantilever beam-column. 

 

Fig. 8 depicts the comparison between overturning 

moment amplification ratio ( 12 / MM ) from the FE 

models of a concrete frame with square floor plan and the 

values found using the simplified amplification factor 

tχ . As one can see, the simplified parameter leads to 

results in close agreement to those obtained for the most 

loaded columns in the FE models; the most loaded 

columns are also the columns of most interest to the 

structural engineer, since it will be determinant in the 

frame’s structural design. The results obtained in this 

study are in accordance with those obtained by Statler et 

al. [6].  

 

 

Figure 7.  Plot of overturning moment amplification (M2/M1) against 
natural period of vibration (T) for the equivalent cantilever beam-

column. 
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Figure 8.  Plot of overturning moment amplification (M2/M1) against 
natural period of vibration (T) to the square concrete frame. 

V. CONCLUSIONS 

The simplified parameter tχ is mostly based on the 

natural period of vibration and geometric information; it 

can be used as an indicator of the susceptibility to global 

second order effects as well as an amplifier that transform 

first-order overturning moments into the respective 

overturning moment if a second-order analysis is carried 

out.  

The derivation was carried out by means of the virtual 

works principle and Rayleigh’s method applied to the 

solution of an equivalent cantilever beam-column. Taking 

in account the expression of bending moment 

amplification proposed by Franco and Vasconcelos [13], 

the simplified parameter is shown that natural period of 

vibration and second-order effects are essentially 

dependent on the mass and bending stiffness of the 

structure. 

Two case studies were carried out: an equivalent 

cantilever beam-column and a fictitious regular 

reinforced concrete square floor plan frame. In both cases, 

the structure’s height was varied from 3 to 45 m in 

intervals of 3 m, totalizing 15 different frame’s height. 

Although the method proposed herein can be easily 

calculated, it leads to satisfactory results and, in a few 

cases, a conservative approximation. It is important to 

note that only a simple beam-column and a regular frame 

were studied and a parametric study shall be carried out 

in order to verify the method’s accuracy in a not regular 

floor plan. Additionally, a more realistic lateral load shall 

be applied that best represents wind loading on a frame 

facade; we have considered a uniform lateral load, but a 

triangular lateral loading is recommended to be 

implemented in the future. 
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