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Abstract—This paper presents a one-dimension kinematic 

hardening model based on continuous hyperplasticity with 

infinite number of yield surface. Continuous hyperplasticity 

is a development of hyperplasticity theory, an approach to 

plasticity theory based on thermodynamics principles. It 

gives ability to develop many sophisticated engineering 

models that can describe more realistic behavior. In order to 

apply to numerical analysis, the discretization from infinite 

number of yield surface to multiple-yield-surface is shown. 

Applications to 1-D Finite element model using rate-

dependent solution will be mentioned in this paper. The 

results show that this is a promising theory that can be 

describe nonlinear elasto-plastic response of material. By a 

suitable choice of some parameters, realistic behavior of a 

model can be derive. 

 

Index Terms—multiple-yield-surface, rate-dependent, cyclic 

loading, kinematic hardening, thermodynamic, elasto-

plastic.  

 

I. INTRODUCTION 

Hyperplasticity theory is an approach to plasticity 

theory based on thermodynamics principle which has the 

root from [1] and developed to a rigorous and consistent 

frame work for a wide range of engineering material by 

[2]- [4]. This concept emphasizes on the use of internal 

variable and the formulation from the first and second 

law of thermodynamic ensures that the response of model 

will automatically obey these laws. One of the advantages 

of this concept is that entire behavior of a model can be 

derive by only two potential function. 

Continuous hyperplasticity, which is introduced in [5], 

is the next step in the development of hyperplasticity 

concept. From this work, the use of internal variable is 

extended to the internal function which gives ability to 

derive models with infinite number of yield surface. 

Potential functions become potential functionals, which 

should be known as function of function. 

Other development of hyperplasticity theory, which 

can be found in [6], is the development for rate-

dependent materials. From this advanced, the rate-

dependent solution is derived to get over the numerical 

obstacle happening in multiple-yield-surface model. 

Many researches have applied the hyperplasticity 

theory for engineering model, see [7]- [10]... However, 

                                                           

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little has been done, such as [7] and [9], by employed the 

continuous hyperplasticity. 

This paper will focus on the one-dimension model.  

The discretization from infinite number of yield surface 

to multiple-yield-surface is introduced in case of rate-

dependent solution. Applications and the results show the 

advantages of this concept and effect of some parameters 

will be discussed. 

II. ONE-DIMESION MODEL BASED ON CONTINUOUS 

HYPERPLASTICITY  

A fundamental of kinematic hardening formulation can 

be found in [11], this section introduces briefly the 

functionals in a slight different form. 

Firstly, the Gibbs free energy functional is presented, 

which takes the form: 
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where ̂ and Ĥ  are the internal function and the 

kinematic hardening function, respectively. The hat 

notation expresses the variables are functions of a 

dimensionless parameter , which varies from 0 to 1. 

The generalized stress is define as: 
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For rate-independent materials, the second functional 

is the yield functional, which in one dimension model 

usually takes the form: 

                                     ˆˆŷ k                                   (3) 

In which ̂  is the dissipative generalized stress and it 

should be noted that ˆ ˆ   is the hypothesis of the 

hyperplasticity concept, which can be found in [2]- [3].  

The flow potential functional is used instead of yield 

functional in case of rate-dependent solution.  

As [6], flow potential functional can be defined as: 
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where is viscosity factor and is the Macaulay 

bracket which operates as x x if 0x  and 

0x  if 0x  . 

The plastic strain rate is as below: 
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where  S  is generalized signum function that   1S x   

if 0x  ,   1S x   if 0x  and  S x undefined if 0x   

The incremental stress-strain response using rate-

dependent behavior is written as: 
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Eq. (6) can be convert to the incremental form as: 
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where dt is the time increment that shown the effect of 

time step in rate-dependent solution. 

III. THE DISCRETIZATION FROM CONTINUOUS MODEL 

TO MULTIPLE-YIELD-SURFACE MODEL 

The formulation in previous section is written in 

continuous functions. In order to apply to numerical 

analysis, it is necessary to establish a discretization 

formulation. The model with infinite number of yield 

surface is now defined in case of multiple-yield- surface 

model. 

The mechanical behavior of one-dimensional 

kinematic hardening with multiple-yield-surface model is 

expected to be as shown in Fig. 1. Each yield surface 

active whenever  get over slip value ki. The hardening 

parameter Hi can be seen as the modulus of a spring when 

yield occur and the viscous elements represent the rate 

effect. 

 

 

Figure 1.  Mechanical behavior of multiple-yield-surface model. 

The Gibbs free energy functional in (1) can be 

rewritten in form: 
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where N is the number of yield surface 

and    1...i
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Therefore, (8) can be rewritten as: 

                
2

2

1 1

1 1

2 2

N N
i i

i

i i

H
g

E N N

 
 

 

                (9) 

The hat notations are abandoned to show that the 

variables are no longer functions, they become a series of 

discretized values. 

The generalized stress corresponding to 
i  is now 

defined as: 
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As [7], Hardening function should takes the form: 

                               . .
n

i iH A B C                           (11) 

where A, B, C, n are parameters for defining the 

hardening values. 

In this research, the Hardening function is chosen as: 
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The yield function takes the form: 

                                    i i iy k                               (13) 

In order to control initial size, ik  is defined as: 
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where k0 is the value of outer most yield surface and the 

0

initial  is the parameter to control the value of inner yield 

surfaces (
00 1initial  )

Thus, the flow potential takes the form: 
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And the plastic strain rate: 
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Finally, the incremental response: 
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Or we can rewrite in other form: 
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The rate dependent solution give ability to get over 

problem when using multiple-yield-surface model. For 

each load increment it is assumed that the active yield 

surface will translate to the stress point after a period of 

time (dt) to ensure the consistent condition of yield 

surfaces. 
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IV. IMPLEMENTED TO THE 1-D FINITE ELEMENT 

MODEL 

Model is tested with a 1-D finite element as shown in 

Fig. 2, a bar fixed at one end and loaded at the other. 

Numerical example is implemented to Matlab program 

and Newton-Raphson method is used for the nonlinear 

analysis. 

 

L

P

 
 

Figure 2.  1-D Finite element model. 

Material properties are chosen based on the properties 

of Steel, Young modulus E=210000Mpa, Yield strength 

P=240Mpa.  

Geometric parameter: Length of element L=100mm, 

Section area A=200mm
2
. 

Loading P is varied in order to view the advantages 

more convenient.  

V. NUMERICAL EXAMPLE AND DISCUSSION 

The results focus on the effect of number of yield 

surface, 
0

initial parameter and the ability of hyperplasticity 

models to capture behaviors under cyclic loading. For the 

influences of other parameters, there should be further 

researches and experimental data. 

A. Effect of Nuber of Yield Surface 

 

Figure 3.  The stress-strain responses in cases of a) bilinear, b) 

piecewise linear and c) nonlinear  

In the conventional approach to elasto-plastic behavior 

using single-yield-surface model, the stress-strain 

response is bilinear. The elastic moduli controls the 

stiffness within yield surface and hardening moduli 

affects when stress point touch the yield surface. By 

using multiple-yield-surface concept, the stress-strain 

response becomes piecewise linear and when the number 

of yield surface increase to infinite number, the stress-

strain behavior is similar to nonlinear behavior as shown 

in Fig. 3. 

In the first example, the loading process P is increase 

from 0 to 54kN. The value of other parameter: 
0

initial = 0 

and number of yield surface (N) is varied. 

The first result is shown in Fig. 4. The 1 yield surface 

model show bilinear behavior. For the case N=2, the 

yield strength of first and second yield surface calculated 

from (14) are 120MPa and 240MPa, respectively. 

Therefore, it can be seen from Fig. 4 that whenever the 

stress get over yield strength of a yield surface, the yield 

surface is active and slope of stress-strain behavior 

change. If number of yield surface increase, the behavior 

is piecewise linear as the result of 6 yield surfaces model. 

 

Figure 4.  The stress-strain behaviors for cases when number of yield 
surface N = 1, 2 and 6. 

Consider the case when N=10 and 20, results of these 

models are shown in Fig. 5. 

 

Figure 5.  The stress-strain behaviors for cases when number of yield 
surface N=1, 10 and 20. 

It can be seen from Fig. 5 that for the model of 10 and 

20 yield surfaces, the behaviors are similar to the 

nonlinear as shown in Fig. 3. In addition, the difference 

of stress-strain response between these models are not too 

much. Therefore, by a suitable choice in number of yield 

surface, the nonlinear behavior of model can be derived. 

B. Influence of Initial Value 
0

initial  

The meaning of value 
0

initial is to control the yield 

strengths of each yield surfaces. For multiple-yield-

surface model, the outer most yield surface is coincident 

with the yield surface of single-yield-surface model. The 

distribution of inner yield surfaces is uniform and depend 

on
0

initial . Fig. 6 shows an example of the distribution of 

yield strength in case of N=5, 0

initial =0 and 0.5.  
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Figure 6.  Distribution of yield strength of yield surfaces in case of a) 1 

yield surface, b) 5 yield surfaces and 
0

initial =0  and c) 5 yield surfaces 

and 
0

initial =0.5 

In the second example, the values of P is similar to 

first example (from 0 to 54kN), number of yield surface is 

N=10 and the value of 
0

initial  is varied.  

 

Figure 7.  The effect of 
0

initial  to the stress-strain responses. 

The result in Fig. 7 show the influence of 
0

initial to the 

stress-strain response. It is clear that the smaller initial 

value used, the earlier plastic behavior occurs. Thus, by 

appropriate choice of initial value, the behavior of model 

can be calibrated. 

C. Behavior under Cyclic Loading 

One of the key advanced of hyperplasticity theory is 

the ability to capture behavior of models under cyclic 

loading.  The continuous hyperplasticity and the 

discretization to multiple-yield-surface give more 

advantages to describe the nonlinear relationship 

especially in unloading process. In this section, the 

behavior of single-yield-surface model and multiple-

yield-surface model (with 10 yield surfaces) is consider.  

The initial value 
0

initial =0. Two loading processes are 

used as show in Table I.  

TABLE I.  LOADING PROCESS (MPA) 

Step 
Process 

1 2 

1 From 0 to 45 From 0 to 54 

2 From 45 to -46.5 From 54 to -54.75 

3 From -46.5 to 48 From -54.75 to 57 

The behaviors of two models when applying two 

loading processes are shown below. 

 

Figure 8.  Stress-strain responses for Process 1. 

In the first loading process, the load cause the stress 

that not get over the yield strength in case of single-yield-

surface model, thus the behavior of this model is purely 

elastic. For multiple-yield-surface model, the plastic 

behavior occurs very early, so the stress-strain response is 

nonlinear as shown in Fig. 8. 

 

Figure 9.  Stress-strain responses for Process 2 

In the second loading process, when yield occurs in 

single-yield-surface model and all the yield surfaces are 

active in the multiple-yield-surface model, the responses 

are shown in Fig. 9. The advantages of multiple-yield- 

surface model is clearly seen. In many kind of material, 

there is no area with purely elastic behavior. For these 

material, the plastic response appears very early and the 

single-yield-surface model cannot capture the realistic 

nonlinear behavior. By employing the multiple- yield-

surface model, these problem can be easily gotten over. 

If the loading-unloading processes continue to apply 

on multiple- yield-surface model, the result is as shown in 

Fig. 10. 

283

International Journal of Structural and Civil Engineering Research Vol. 6, No. 4, November 2017

© 2017 Int. J. Struct. Civ. Eng. Res.



 

Figure 10.  Behaviors of multiple-yield-surface model under mono 
loading and cyclic loading. 

The ability for capturing behavior of hyperplasticity 

model under cyclic loading can be clearly seen in Fig. 10. 

The characteristic of kinematic hardening is also shown. 

If the cyclic loading continue, behavior will follow the 

Masing rule as discuss in [7], which describe the 

relationship between response of cyclic loading and mono 

loading processes as shown in Fig. 10 and can be briefly 

stated: 

 The unloading and reloading curves should 

follow the initial loading curve (backbone curve) 

if the previous maximum strain is exceeded. 

 If the current loading or unloading curve 

intersects the curve described by previous 

loading or unloading curve, the stress-strain 

relationship follows the previous curve. 

VI. CONCLUSION 

The results show the advantages of the continuous 

hyperplasticity theory. By a suitable choice of parameters, 

the theoretical model can describe a realistic nonlinear 

behavior of material, especially for those with cannot be 

found a purely elastic response. For a particular material 

model, there should be further researches which calibrate 

the results of theoretical model and data from experience. 

Ability to capture behavior of model under cyclic 

loading is also shown in this paper. This is an advanced 

of plasticity theory based on thermodynamics principles. 

The results of application to 1-D Finite element models 

give the possibility for the extension to multi-dimension 

models, which could be done in further research. 
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