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Abstract—The cell-based smoothed finite element method 

(CS-FEM) and second order cone programming (SOCP) are 

used to access the seismic stability of slope in cohesive-

frictional soil. In this study, the seismic force will be consid-

ered as the inertial load which calculated through horizontal 

acceleration factor αh. The stability factor is expressed in the 

form of a dimensionless number γmaxHtan/c; where H is the 

slope height, γmax and c are the maximum unit weight and 

cohesion of soil, respectively. In addition, the failure mecha-

nisms of slope will be obtained directly from solving the 

optimization problems. A series of simulations are carried 

out and the results confirm that this numerical procedure 

provides stable and accurate solutions to seismic stabilities 

in compare with those using finite element method as well as 

the influence of the properties of soil to the slope stability. 

 

Index Terms—seismic, slope stability, CS-FEM, SOCP, limit 

analysis, upper bound 

 

I. INTRODUCTION 

There are many approaches to solving geotechnical 

stability problems, including the seismic stability of 

slopes. One of the most powerful tool is to use limit theo-

ry, which estimates the ultimate load as well as failure 

mechanism. In this theory, upper bound or lower bound 

solution are used to determine the exact collapse load. 

However, the upper bound solution is usually employed, 

especially in geomechanic, because the kinematically 

admissible velocity field in upper bound analysis is easy 

to establish rigorously in comparison with the statically 

admissible stress field for lower bound solution. 

Many researches have been applied the numerical 

method solution for the slope problems. Ref. [1] used the 

numerical method based on the upper bound theorem of 

perfect plastic solids to determine the stability of slope in 

static conditions and compared them with those of the 

experimental method. In the same conditions, [2] applied 

the finite element method based on the upper and lower 

bound theorem. However, little researches deal with the 

determination of the seismic stability of slope. In 2003, [3] 

used the numerical limit analysis method by applying to 

the problem of two-dimensional pseudo-static slope sta-
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bility analysis based on upper and lower bound formula-

tion. 

This paper employ the cell-based smoothed finite ele-

ment method (CS-FEM) with second-order cone pro-

gramming (SOCP) to estimate the stability of slope in 

seismic conditions ([4-10]). A variety of examples will be 

carried out to evaluate soil properties as well as compared 

with the results of [3]. 

II. PROBLEM DEFINITION 

A slope with height H tilted at a β angle in cohesive 

soil is illustrated in Fig. 1. The ground deformation takes 

place under plane strain. The slope is intended to deter-

mine the stability in the presence of horizontal seismic 

acceleration αh. The stability of slope can be determined 

by a dimensionless factor γmaxHtan/c; where H is the 

slope height, γmax,  and c are the maximum unit weight, 

friction angle and cohesion of soil, respectively. The soil 

mass is assumed to be perfectly plastic, follow the Mohr-

Coulomb failure criterion and an associated flow rule. 

Drained loading condition is also considered. Therefore, 

the values of cohesion (c) and friction angles () should 

be corresponding to drained conditions, that is, c = c’ and 

 = ’. 

 

Figure 1. Definition of the problem 

III. UPPER BOUND LIMIT ANALYSIS FORMULATION 

Consider a rigid-perfectly plastic body of area 2R  

with boundary Γ, which is subjected to body forces ƒ and 

to surfaces tractions g on the free portion Γt of Γ. The 

constrained boundary Γu is fixed and u t    , 
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u t   . Let  
T

u vu  be plastic velocity or flow 

fields that belong to a space U of kinematically admissi-

ble velocity fields. Where u  and v  are the velocity 

components in the x and y directions respectively. The 

strain rates ε  can be expressed by relations 
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The external work rate associated with a virtual plastic 

flow u  is expressed in the form as 

 ( ) = T T

ext
t

W d d
 

  u f u g u   (3) 

The internal plastic dissipation of the two-dimensional 

domain Ω can be written as 

 ( ) ( )intW D d


 ε ε   (4) 

where the plastic dissipation ( )D ε is defined by 

 
σ( ) 0

( )D max . .
 

 
ε

ε σ ε σ ε   (5) 

with σ represents the admissible stresses contained within 

the convex yield surface ψ(σ) represents the stresses on 

the yield surface associated to any strain rates ε  through 

the plasticity condition. 

The kinematic theorem of plasticity states that the 

structure will collapse if and only if there exists a kine-

matically admissible displacement field Uu , such that 

 0( ) < ( ) ( )int ext extW W W ε u u   (6) 

where λ
+
 is the collapse load multiplier, 0 ( )extW u  is the 

work of any additional loads ƒo, go not subjected to the 

multiplier. 

If defining = { | ( ) =1}extC U Wu u , the collapse load 

multiplier λ
+
 can be determined by the following mathe-

matical programming 

 0( ) ( )ext
C

min D d W


 u

ε u   (7) 

IV. BRIEF ON THE CELL-BASED SMOOTHED FINITE 

ELEMENT METHOD (CS-FEM) 

The essential idea of the cell-based smoothed finite el-

ement method (CS-FEM) combining the existing finite 

element method (FEM) with a strain smoothing scheme.  

In CS-FEM, the problem domain is discretized into ele-

ments as in FEM, such as 1 2 ..... nel     and 

,i j i j     the displacement fields are approxi-

mated for each element as 

 
1
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n
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I I
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u x N x d
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where n is the number of node per element and 

  
T

I I Id u v  is the nodal displacement vector. 

Elements are then subdivided into several smoothing 

cells, such as shown in Fig. 2, and smoothing operations 

are performed for each smoothing cell (SC) 

 

Figure 2． Smoothing cells for various element types: triangular ele-

ment (left), quadrilateral element (middle) and polygonal element 

(right). 

A strain smoothing formulation is given by [4] 

 

( ) ( ) ( , )

          ( ) ( , )

e

e

h h

C c

c

h

c

c

x x x x x d

u x x x x d

  







  

   




  (9) 

where h  is the smoothed value of strains h for smooth-

ing cell e

C  and φ is a distribution function or a smooth-

ing function that has to satisfy the following properties [4] 
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For simplicity, the smoothing function φ is assumed to 

be a piecewise constant 
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where AC is the area of the smoothing cell e

C  

Substituting (11) into (9), and applying the divergence 

theorem, one obtains the following equation 
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Figure 3． Geometry definition of a smoothing cell. 
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where Γc is the boundary of Ω
e
c and n is a matrix with 

components of the outward surface normal given by 
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Introducing a finite element approximation of the dis-

placement fields, the smooth version of the strain rates 

can be expressed as 

 ( ) h

C
x Bd   (14) 

where 
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where ÑI,α is the smoothed version of shape function de-

rivative NI,α; ns is the number of edges of a smoothing cell 

Ωc as shown in Fig. 3; k

Gx  is the Gauss point of k

C  

boundary segment which has length lx and outward sur-

face normal n
k
. 

V. CS-FEM FORMULATION FOR PLANE STRAIN WITH 

MOHR-COULOMB YIELD CRITERION 

In this study, the Mohr-Coulomb failure criterion is 

used 

 

2 24

2

xx yy xy

xx yy

( ) ( ) ...

            ( )sin ccos

    

   

   

  
  (18) 

where c is cohesion and φ is internal friction angle of soil. 

The plastic strains are assumed to obey the normality 

rule 
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where the plastic multiplier   is non-negative. 

Hence, the power of dissipation can be formulated as a 

function of strain rates for each domain i as [5] 
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Introducing an approximation of the displacement and 

using the smoothed strains, the upper bound limit analysis 

for plane strain using the smoothed strains can be formed 

as 
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where nSD is the smoothing cell and nel is the number of 

element in the whole investigated domain. And the fourth 

constraint in problem (25), resulting optimization prob-

lem is cast in the form of a second-order cone program-

ming (SOCP) problem so that a large-scale problem can 

be solved efficiently ([6-11]). 

VI. RESULTS AND DISCUSSION 

In this study, the sizes of domain analysis need to en-

sure that the failures of slope only occur in chosen areas. 

Moreover, many cases considered to investigate the in-

fluence of many difference factors to the slope stability. 

An example for slope with the angle β = 30
o
, which 

shows boundary conditions and typical mesh, is illustrat-

ed in Fig. 4 with consists of 2270 four-node quadrilateral 

elements. 

 

Figure 4． Typical mesh for the slope with β=30o. 

A. Horizontal Critical Seismic Coefficient (αc) 

A slope with β = 30
o
, H = 20m and  = 30

o
 is described, 

assuming that vertical seismic loading is ignored. Various 

factors c/(γHtan) from 0.022 to 0.303 were chosen to 

find out horizontal critical seismic coefficient (αc).  The 

276

International Journal of Structural and Civil Engineering Research Vol. 6, No. 4, November 2017

© 2017 Int. J. Struct. Civ. Eng. Res.



result is compared with the result of [3]. The details are 

shown in Table I. 

 

TABLE I.  HORIZONTAL CRITICAL SEISMIC COEFFICIENT (ΑC) 

c/(γHtan)  

Loukidis 

CS-FEM 

Lower bound Upper bound 

0.022 0.111 0.145 0.124 

0.043 0.181 0.220 0.192 

0.087 0.291 0.331 0.305 

0.173 0.464 0.504 0.478 

0.260 0.593 0.631 0.612 

0.303 0.646 0.678 0.669 

 

It can be seen in Fig. 5 that the study’s result is better 

than those of [3] with the same number of elements, 

about 2300. When compared to the average values of 

upper and lower bound limit analysis, the error provided 

by this analysis lies in the range of roughly 1% to 4%. 

 

Figure 5． Comparison horizontal critical seismic coefficient 

The patterns of plastic energy dissipation in the case 

c/(Htan) = 0.022 and 0.173 are shown in Fig. 6. 

B. Effect of the Slope Angle β 

A series of horizontal seismic coefficient αh from 

0.145 to 0.678 were chosen to considering the effect of 

the slope angle β on the stability. As expected, the stabil-

ity factor Htan/c decrease as the slope angle or the hor-

izontal seismic coefficient increase. The detail is shown 

in Table 2 as well as Fig. 7. It’s easy to see that there are 

many differences in the stability when the horizontal 

seismic coefficient is small, namely, the stability factor of 

slope with β = 30
o
 is much higher than those of β = 90

o
 

(about ten times). However, when the horizontal seismic 

coefficient is greater than 0.6, the stability factor seems 

not too much different. 

 

 

 

 

Figure 6． Plastic dissipation distribution with c/(Htan) is 0.022 and 

0.173. 

TABLE II.  THE STABILITY FACTOR OF SLOPE ΓHTAN/C 

αc 
β 

30 45 60 90 

0.145     35.475      10.789       6.420       3.145  

0.220     18.973       8.331       5.410       2.815  

0.331     10.287       6.013       4.289       2.400  

0.504      5.413       3.948       3.105       1.896  

0.631      3.755       3.024       2.504       1.627  

0.678      3.344       2.759       2.322       1.544  

 

 

Figure 7． The slope stability for different cases of β  

a) 
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b) 

 
c) 

 
d) 

 

Figure 8． Plastic dissipation distribution for the case αc=0.145 and a) 

β=30o ,b) β=45o,c) β=60o and d) β=90o. 

 

Figure 9． Comparison the stability of slope in static and seismic condi-

tions. 

The patterns of plastic energy dissipation for the case 

β=30
o
, 45

o
, 60

o
 and 90

o
 and αc=0.145 are shown in Fig. 8. 

In order to more general about the effect of earthquake 

to the stability of slope, Fig. 9 compares the stability fac-

tor (γHtan/c) in static conditions with two cases 

αc=0.145 and αc=0.331 in three different values β, namely, 

45
o
, 60

o
 and 90

o
. When compared to the case αc=0.145, 

the stability of slope in static conditions is greater than 

3.7-5.8 times. Although, the horizontal seismic coeffi-

cient increases more than doubled, from 0.145 to 0.331, 

the stability factor only decreases less than twice, about 

1.31-1.79 times. 

VII. CONCLUSION 

A novel procedure for performing upper bound limit 

analysis using cell-based smoothed finite element method 

(CS-FEM) and second-order cone programming (SOCP) 

has been described. The key advantage of applying the 

CS-FEM to limit analysis problems is that the size of 

optimization problem is reduced. Various numerical ex-

amples were presented to show that the presented method 

can provide accurate and stable solution. 

The effect of pseudo-static seismic forces on the stabil-

ity of slope has been adopted. The seismic stability fac-

tors are presented in the tables as well as compared with 

other solutions in the graphics. The results obtained 

should be useful for designing foundations in a seismical-

ly active zone. 
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