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Abstract—Self-compacting concrete is a new construction 

material and its mechanical properties are not completely 

understood in the literature. Compressive strength is 

representative of mechanical properties of hardened 

concrete; hence its prediction at the fresh stage can improve 

the final performance of structure. Sensitivity of 

compressive strength to the changes in mixture proportions, 

curing and environmental conditions together with the 

heterogeneous nature of the concrete complicates the 

problem. Considering the capabilities of artificial intelligent 

systems to discover any consistency between huge amounts 

of complex data, this study utilizes the ANFIS models to 

predict the compressive strength of Self-compacting 

concrete from mixture proportions and slump flow values. 

The empirical data from previously conducted 55 

experiments have been implemented in 18 distinct models in 

ANFIS. The model including all input data (mixture 

components and slump flow) gives the best prediction. 

However eliminating the maximum size and volume of the 

aggregate from the input data results the least accurate 

ANFIS model. Any changes in the powder volume, paste 

content and slump flow also similarly affect the 

predictedvalue. Particular effect of each input data such as 

the interaction between the powder volume and the 

compressive strength are also investigated and compared 

with the basic concepts of concrete technology.  

 

Index Terms—ANFIS, self-compacting concrete, 

compressive strength, mixture proportion, slump flow, 

sensitivity, concrete technology 

 

I. INTRODUCTION
 

Self-Compacting Concrete (SCC) is
 

a new type of 

construction materials and poses the capabilities of 

flowing easily, filling the formwork and making a full 

compaction under its own weight. SCC eliminates the 

vibration process, improves the environmental 

consideration and reduces the labor costs. Furthermore 

the sustainable characteristics, solving the congestion 

problems of the reinforcement in the section and 
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increasing the construction speed and overall quality of 

the structures can be achieved by using SCC in the 

construction projects [1]. First studies in development of 

SCC was carried out by Okamura (1997), Okamura and 

Ouchi (1999) and Ouchi et al. (2003)) in Japan [2]. More 

recently, Su et al. (2001) and Su and Miao (2003) 

developed an alternative method for composing SCC [3].  

Despite the studies on advantages of SCC associated to 

its high performance in fresh state, there are less 

available results regarding the expected hardened 

properties [4]. SCC is highly sensitive to the changes in 

the proportions of the mixture components and requires 

an increased quality control. The typical characteristics of 

SCC mixture proportions, which are necessary to ensure 

adequate fresh properties, can have significant effects on 

the hardened properties, including Compressive Strength 

(CS), dimensional stability against temperature and 

humidity, and durability [5]. 

Hardened concrete properties directly come from the 

fresh properties; the problem is that following the 

hardening process, the quality and mechanical properties 

cannot improve. In other words, structural behavior of the 

concrete relies on mixture and material properties and 

these factors cannot be changed after hardening [6]. 

Numerous studies have utilized different methods to 

estimate CS of conventional concrete (Chen et al., (2003), 

Han et al., (2003), Gupta et al., (2006), Peng et al., 

(2009), Sobhani et al. (2010) and Atici, (2011)). In 

addition, a few investigations such as Chidiac et al. 

(2005), Yeh (2008), Hsu et al. (2011) in the literature 

have tried to predict CS of concrete from the fresh 

properties like slump value [7]. In the case of SCC 

almost there is no similar study to predict CS from fresh 

properties [8], [9]. 

In recent years, artificial intelligence-based methods 

have been applied to simulate the non-linear and complex 

behavior of various properties of construction materials 

in recent years [10]. 

Nataraja et al. (2005) designed a neuro-fuzzy model 

for mixture design of conventional concrete. 
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Tesfamariam and Najjaran (2006) designed the adaptive 

network-fuzzy inference to estimate CS of concrete from 

the mixture design. Bilgehan (2010) performed a 

comparative study to estimate CS of concrete by using 

the neural network and neuro-fuzzy modeling approaches. 

Nehdi and Bassuoni (2009) found a fuzzy logic approach 

for estimating the durability of concrete. Tanyildizi and 

Qoskun (2007) have utilized the fuzzy logic model to 

predict the CS lightweight concrete made with scoria 

aggregate and fly ash. Uyunoglu and Unal (2006) 

proposed a new method to determine CS of fly ash 

concrete by fuzzy logic models. Yang et al. (2005) have 

evaluated CS of concrete by fuzzy neural networks and 

found well predicted values of CS from the models [11], 

[12]. 

This study emphasizes on the followings items:  

 Comparative collection of mixture design, slump 

flow and CS. 

 Evaluating the individual or combined effects of 

mixture components and slump flow on CS. 

 Simulating the relationship between slump flow 

and mixture proportions as with CS in ANFIS. 

 Comparing the accuracy of the model predictions 

with the experimental values of CS. 

 Comparing the developed euro-fuzzy model 

between each input and output data with the 

corresponding concepts of concrete technology. 

II. SIGNIFICANCE OF THE RESEARCH 

SCC is a new construction material and the 

relationship between the properties in fresh and hardened 

stages is not completely understood in the literature. 

Reliable performance of neural networks and fuzzy 

systems in analyzing the multi-functional and 

complicated systems ensures to find a model to predict 

CS from the fresh state properties of SCC. The findings 

of this investigation can provide a platform to develop 

analytical and mathematical models to find out the 

hardened properties of SCC before hardening.  

III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

(ANFIS) 

Adaptive Neuro-Fuzzy Inference System (ANFIS), 

which has the benefits of both artificial neural network 

and fuzzy systems; is particularly useful in the 

engineering applications where classical approaches fail 

or they are too complicated to be used [13]. 

 

Figure 1.  The structure of ANFIS network 

Quantity and type of membership functions (triangular, 

trapezoidal, bell- shaped, Gaussian and sigmoid), types 

of output membership function (constant or linear), 

optimization methods (hybrid or back propagation) and 

the number of epochs are five important adjustments in 

ANFIS to reach the most effective model by minimum 

errors. Fig. 1 shows the structure of the best matching 

network for ANFIS model depicting on the number of 

rules, fuzzy clusters of each input and their relationship. 

The main factor to evaluate the efficiency of the 

ANFIS models is the error size. For ANFIS-based soft 

sensor models, when estimation/prediction accuracy is 

concerned, it is assumed that both the data used to train 

the model and the testing the trained data to make the 

estimations are free of errors (Klein and Rosin, 1999). 

But rarely a data set is clean before extraordinary effort 

having been put to clean the data [11]. Bansel et al. (1993) 

studied the effect of errors in test data on the predictions 

made by neural network and linear regression models 

[14].  

Application of ANFIS was first proposed by Jang 

(1993). Ozel (2011) used ANFIS to predict CS of high 

performance concrete from fresh properties based on the 

limited data of his research and found very poor relation 

between the real and predicted values [6]. Sadrmomtazi 

et al. (2013) [15] studied the relationship between CS of 

lightweight concrete and mixture proportions by ANFIS 

and regression modeling. They found that accurate 

prediction of CS needs more effective parameters to be 

included in analysis. Vakhshouri and Nejadi (2014) [7] 

investigated different combinations of membership 

functions, number of epochs, optimization and 

classification methods to reach the most compatible 

results between the test data and ANFIS prediction of CS 

of high strength concrete from splitting tensile strength 

and modulus of elasticity. 

This study investigates the design of the most known 

hybrid neuro-fuzzy network ANFIS models to predict CS 

of SCC. Among the Mamdani and Sugeno type 

architectures, the later has been implemented. This 

version is constructed so that it has five fuzzy “if –then” 

governing rules and processes a set of applied input 

variables to produce a single predicted output. A trained 

three layer back propagation neural network is integrated 

in the models to remember the experimental data 

pertaining to the slump flow and mixture proportions 

versus CS. The collected data include 55 sets of empirical 

investigations from the literature. The bell-shaped 

membership function normalization method with 

3membership functions within 500 epochs has been 

applied to the ANFIS models.  

IV. MATERIALS AND DATA RESOURCES 

Total number of 55 sets of different mixture 

proportions and fresh property (slump flow) data of SCC 

from previously conducted experiments have been 

utilized [16]. Each dataset is representing a group of tests 

carried out by the indicated researchers. Range and 

details of these experimental data are presented in Tables 
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 respectively. The abbreviations presented in Table I and Table II are explained also.  

TABLE I.  DATA RANGE OF MIXTURE PROPORTION, FRESH AND HARDENED PROPERTIES OF SCC 

property 

aggr.max 

size (mm) 

aggregate 

(vol. %) 

powder vol 

(kg/m3) 

w/p by 

weight 

Paste vol. 

( %) 

Vf/Vm 

(%) 

Slump flow 

(mm) 

28d-f'c 

(MPa) 

Range 10-40 28.1-42.3 385-635 0.26-0.48 29.6-40.4 38.1-52.9 500-790 22-95 

TABLE II.  PREVIOUSLY CONDUCTED EXPERIMENTAL DATA OF MIXTURE PROPORTIONS, SLUMP FLOW AND COMPRESSIVE STRENGTH OF SCC 

Year Researcher(s) Aggr.max Aggregate Powder  w/p by Paste vf/vm Slump 𝑓𝑐
′ 

size (mm) vol. (%) vol.(kg/m
3
) weight vol. (%) vol. (%) flow(mm) (MPa) 

1993 Hayakawa et al. 20 32.1 500 0.34 34.6 46 650 60 
1993 Sakamoto et al. 20 34.2 500 0.34 34.6 44.3 650 53.7 
1993 Sakamoto  et al. 20 34.9 500 0.34 34.7 45.5 650 44.2 
1993 Miura  et al. 20 34.1 488 0.34 33.8 44.9 500 48 
1993 Miura  et al. 20 30.6 500 0.34 34.6 48.1 650 39 
1994 Furuya  et al. 40 42.3 410 0.35 29.6 44.2 550 36 
1993 Kuroiwa  et al. 20 34.3 500 0.34 34.2 46 675 53 
1994 Umehara et al. 15 34.9 607 0.26 36 40.3 650 65 
1996 Kosaka  et al. 20 31.2 470 0.35 34 48.4 620 55 
1996 Kosaka  et al. 20 37.5 472 0.35 33.9 43.8 650 55 
1995 Fukute  et al. 20 30.9 385 0.48 31.2 51.8 645 41 
1997 Fukute  et al. 20 31 448 0.4 32.7 48.7 647 56 
1996 Sedran et al. 20 35.2 484 0.35 33.1 49.8 650 50 
1996 de Larrard et al. 20 32.9 473 0.38 33.5 50.8 640 94 
1998 Khayat, Aitcin 10 33.6 520 0.42 38.3 41.6 640 42 
1998 Khayat, Aitcin 25 32.5 466 0.45 37 43.5 580 45 
1998 Khayat, Aitcin 25 31.8 537 0.42 40.3 38.1 610 58 
1998 Khayat, Aitcin 14 29.6 532 0.41 40.4 38.8 615 35 
1999 Sonebi, Bartos 20 28.3 525 0.38 38.3 46.5 650 47 
1999 Sonebi, Bartos 10 28.3 530 0.37 36.9 47.6 690 80 
1999 Billberg  et al. 16 29.5 595 0.28 36.7 44.5 670 62.3 
1999 Billberg  et al. 16 31 526 0.31 33.7 47.9 700 69.3 
1998 Petterson 16 30.9 525 0.34 36.1 46.3 650 44 
1998 Petterson 10 31.1 480 0.35 32.6 50 710 70 
1999 Nishizaki  et al. 20 29.8 585 0.3 36.5 43.7 650 60 
1999 Nagai  et al. 15 33.3 580 0.32 37.4 47 695 73 
2000 Henderson 20 30 550 0.35 38.4 43.4 625 75 
1999 Mizobuchi  et al. 20 32.9 533 0.3 32.9 47.5 650 32.5 
1999 Mizobuchi  et al. 20 32.6 625 0.27 38.8 39.7 650 24 
1999 Mizobuchi  et al. 20 33.4 635 0.26 39 40.6 700 24 
1999 Mizobuchi  et al. 20 31 554 0.32 35.7 45.9 650 30 
1999 Wetzig 16 30.1 480 0.36 32.5 52.6 640 50 
1999 Wetzig 16 31.3 460 0.4 33.3 52.9 670 50 
1999 Wetzig 32 38.6 460 0.37 32.2 50 650 50 
1999 Chikamatsu et al. 20 31 501 0.33 33.4 48.5 605 39 
1999 Maeda  et al. 20 30.9 529 0.34 35.6 46.9 700 25 
1999 Maeda  et al. 20 29.5 462 0.35 33.2 50.2 650 22 
2001 Tanaka, Mori 20 28.9 520 0.3 33.6 52.5 670 25 
2001 Inoue  et al. 20 31.8 500 0.32 33.8 48.8 650 25 
2001 Johansen, 

Kyltveit 

20 29.5 432 0.45 33.5 49.3 725 52 
2001 Ohtomo  et al. 20 29.9 438 0.41 32.4 49 650 64 
2001 Kubo  et al. 20 30.6 529 0.3 33.5 49.6 650 60 
2002 Centing  et al. 16 29.8 538 0.33 36 48.8 700 78 
2002 Centing  et al. 16 29.4 532 0.32 34.8 50.3 700 78 
2001 Fleming 20 37.7 450 0.4 32.3 48.8 630 62 
2002 Khayat, Morin 10 29.7 480 0.37 33.4 49.2 675 57 
2002 Osterberg 16 30.5 600 0.28 38.4 45.3 740 75 
2002 Lessard  et al. 19 34 450 0.42 33.7 48.5 660 28 
2003 Collepardi  et al. 16 31.3 500 0.36 34.5 50.5 700 43 
2003 Collepardi  et al. 22 34.5 530 0.33 35.2 43.7 730 95 
2003 Collepardi  et al. 20 31.1 435 0.41 33.2 52.8 790 42 
2003 Fredvik  et al. 20 29.5 432 0.47 34 48.9 725 52 
2003 Fredvik  et al. 16 32.1 474 0.38 34.8 48.5 650 50 
2003 Ouchi  et al. 20 31.7 470 0.33 30.4 52.3 630 74 
2003 Ouchi  et al. 20 28.1 575 0.3 37.3 46.4 665 71 

 

V. RESULTS AND DISCUSSION 

Analysis of ANFIS model includes the training and 

testing steps. The training process attempts to develop a 

model between the series of input data with a single 

output in a neuro-fuzzy space. Generally the best 

matching model is achieved after great numbers of 

training epochs to minimize the error size. The error size 

is calculated based on the least square method by 

comparing the real and predicted values of CS.  

After completion of the training step, the developed 

model in training process is verified by the testing 

process of data by different sets of data. Therefore the 

collected experimental data is classified into training and 

testing data sets. The testing data for verification of the 

trained model is about 10% of the total data and is 
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selected to be representative for all ranges of CS, mixture proportions and slump flow as presented in Table II. 

TABLE III.  DIFFERENT COMBINATIONS OF SLUMP FLOW AND MIXTURE PROPORTIONS OF CSS 

Comb. Mixture proportion and slump flow Output Comb.   

A aggr.max size + aggr.vol% + powd. vol. + w/p 

by wt + paste vol.% + vp/vm-vol.% + slump 

flow 
fc−28d
′  

J w/p by wt + paste vol.% + vp/vm-vol.% 

+ slump flow fc−28d
′  

B aggr.vol% + powder vol + w/p by wt + paste 

vol.% + vp/vm-vol.% + slump flow fc−28d
′  

K paste vol.% + vp/vm-vol.% + slump flow 
fc−28d
′  

C aggr.max size + powder vol + w/p by wt + paste 

vol.% + vp/vm-vol.% + slump flow fc−28d
′  

L vp/vm-vol.% + slump flow 
fc−28d
′  

D aggr.max size + aggr.vol% + w/p by wt + paste 

vol.% + vp/vm-vol.% + slump flow 
fc−28d
′  

M slump flow fc−28d
′  

E aggr.max size + aggr.vol% + powder vol + paste 

vol.% + vp/vm-vol.% + slump flow fc−28d
′  

N aggr.max size + aggr.vol% + powder vol 

+ w/p by wt + paste vol.% fc−28d
′  

F aggr.max size + aggr.vol% + powder vol + w/p 

by wt + vp/vm-vol.% + slump flow 
fc−28d
′  

O aggr.max size + aggr.vol% + powder vol 

+ w/p by wt 
fc−28d
′  

G aggr.max size + aggr.vol% + powder vol + w/p by 

wt + paste vol.% + slump flow fc−28d
′  

P aggr.max size + aggr.vol% + powder vol 
fc−28d
′  

H aggr.max size + aggr.vol% + powder vol + w/p 

by wt + paste vol.% + vp/vm-vol.% fc−28d
′  

Q aggr.max size + aggr.vol% 
fc−28d
′  

I powder vol + w/p by wt + paste vol.% + vp/vm-

vol.% + slump flow fc−28d
′  

R aggr.max size 

fc−28d
′  

 

A 
 

B 
 

C 
 

D 
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G 

 
H 
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Figure 2. 
 

Minimizing the error sizeby increasing the epochs to develop aneuro-fuzzy model 

   
A B C 

   
D E F 

   
G H I 

   
J K L 

   
M N O 

   
P Q R 

Figure 3.  Testing the trained data with some non-trained data to evaluate accuracy and of each trained dataset in 18 combinations of training data 

Fig. 2 shows the training results in ANFIS models in 

all combinations. The diagram is the developed model 

with minimum error size during the training process. 

Succeeding this process, the testing data are compared 

with the predicted values of trained model. Fig. 3 shows 

the results after verification process with testing data. 

ANFIS minimizes the error size in both the training and 

testing process by increasing the epoch numbers to reach 
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a stable condition. Table IV shows the training error size 

and the average testing error size for all the 18 

combinations of the input data. 

The third, fourth and sixth case studies in the test data 

in Fig. 3 are compatible with the predicted values in the 

trained models. The first case study (Collepardi et al. 

2003) has a significant effect on the increased error size 

in testing process in the combinations G, M, O, P and Q. 

In addition the second case study (Collepardi et al. 2003) 

is not matching in combinations D, H, I, J and K. The 

fifth case study in testing data (Ouchi et al. 2003) is not 

matching with the trained data in combinations A, B, C, 

E, F, G, H, L, N, O, Q and R.  

In combinations A and B with acceptable error sizes 

after training, the fifth case study causes considerable 

increase in the error size. Higher value of CS in the first 

and fifth case studies can be a reason for the amplified 

error size. The highest value of slump flow is recorded in 

the second case study. This may cause some unexpected 

errors in the model in comparison with other similar 

normal strength SCC with less values of slump flow.  

Fig. 4 shows the predicted values of ANFIS model in 

combinations B and L versus the experimental CS in the 

last epoch of training process respectively. It is also 

worth to mention that 49 out of 55 case studies have been 

selected as training case studies and the remaining 6 case 

studies are used in testing process.  

Fig. 5 shows three dimensional diagram of parameters 

after completion of analysis and development of the 

ANFIS models in combinations N, B and J. Individual 

effect of each input parameter on CS is extracted from 

the combinations A and B and presented in Fig. 6 in a 

two dimensional diagram. 

From the point of view of concrete technology, each 

component on the mixture has specific effect on CS. For 

instance, the cement content and the ratio of water to 

binder have increasing and decreasing effect on CS 

respectively. While the role of each component in the 

neuro-fuzzy based ANFIS models is changing in 

different combinations. However they follow a similar 

trend and the extreme points in the curves. Analysis of 

testing process, confirm that the best prediction of CS is 

obtained by combination of all 7 parameters in input data. 

Excluding the slump flow accompanied by the powder 

volume from the input data causes a considerable effect 

on the accuracy of the ANFIS model. 

The least accurate ANFIS model was obtained by 

elimination the maximum size of the coarse aggregate 

and the volume of total aggregates from the input data; 

i.e. including them in input data considerably improves 

the efficiency of the model. 

  

Figure 4.  Predicted vs. real compressive strength at the last epoch in combinations A, B.  

   
N B J 

Figure 5.  Three-dimensional surface diagrams of combination of parameters 
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fc
′-paste volume% - E fc

′-paste volume% - A fc
′- w/p by wt. - B 

   
fc
′–vf/vm - B fc

′-powder volume -A fc
′-powder volume  -  B 

Figure 6.  Particular neuro-fuzzy relationship of mixture proportion and slump flow with the compressive strength  

The second least accurate model is the result of the 

removing of the slump flow and the volumetric ratio of 

powder from the input data. However, excluding the 

aggregate volume and slump flow from the model at the 

same time, improves the estimated value of CS in the 

ANFIS model. 

According to Table IV, Fig. 2 and 4, the best fitting 

relationship in the training process is obtained in 

combinations A, B and E. In the developed models, the 

error size is almost zero. All combinations that include at 

least 6 out of 7 input data, give better estimation of CS. 

Decreasing the number of input data to less than 6 

dramatically reduces the efficiency of the models. 

Combination E makes the least training error size and 

the best prediction in training process. Replacing the 

paste volume with water to powder ratio in combination 

E, (resulting the combination F) has small effect on the 

predicted values of CS. It increases the size of training 

error from 0.004 to 0.02. While replacing the powder 

volume with water to powder ratio increases the error 

size up to 0.08. Comparing the combinations C and D, 

CS is more sensitive to the aggregate volume rather than 

powder volume. This conclusion is also obviously seen in 

comparing the combinations P, Q and R. 

According to the ANFIS analysis, the least consistency 

is observed between the maximum size of aggregate and 

CS. This is to some extent in contrast with their 

relationship in concrete technology. In other words, the 

maximum size of aggregates has the least effect on CS. 

Effect of aggregate volume in CS is higher than the 

maximum size of aggregates.  

According to H and L ANFIS models, excluding the 

slump flow from the combination A (which includes all 

the mixture proportions and slump flow), does not 

strongly affect the prediction of CS. While including the 

slump flow it in combinations L and M causes high error 

sizes in predicted values. Therefore the slump flow 

cannot be a good benchmark to estimate CS. 

Combination E has the best fitting relationship 

between the predicted and experimental output data in the 

training process. In other words, in comparison with 

combination D, excluding the water to powder ratio from 

the input data improves the prediction of CS. In 

combinations O and P, including the water to powder 

ratio in accompany with the aggregate volume, maximum 

size of the coarse aggregate and the powder volume 

improve the precision of the output data. In addition the 

paste volume has unavoidable effect on the predicted 

values of CS. 

Despite a good compatibility between the experimental 

and predicted data in training process of combination L, 

the case studies by Delarrad et al. (1996)), Chikamatsu et 

al. (1999) and Maeda et al. (1999) cause the major errors 

in the training process.  

The diagrams in Fig. 6 extract the following 

conclusions: 

In combination A, the maximum size of aggregate till 

25 millimeters increases CS. Afterward, increasing the 

coarse aggregate size descends CS values. Moreover, 

increasing the aggregate volume beyond 35%of the SCC 

mixture will reduce CS. 

The powder volume beyond 500 kg/m
3
 decreases CS; 

while increasing the water to powder ratio will improve 

the precision of the prediction.  

The volumetric ratio of fine aggregate to mortar up to 

45%has a decreasing effect on CS of SCC, while 

exceeding this ratio above 45 increases the output value. 

VI. CONCLUDING REMARKS 

Fifty five datasets of previously conducted 

experimental studies on 28 days CS of SCC have been 

examined and analyzed. Combined effects of slump flow 

and mixture components on CS of SCC for 18 distinct 

combinations are simulated by ANFIS models. The 

following conclusions can be drawn from the study: 

Verified type and number of input data strongly affect 

the mathematical or traditional models in studying the 

concrete properties. In this regard, the neuro-fuzzy 

models pose the capability of analysis of any type of data 

in fresh and hardened stages of SCC to discover and 

propose the possible relationships.  
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Including all the mixture components and slump flow 

as input data in ANFIS models gives the best prediction 

of CS of SCC as output data. 

Combination of less than 6 input data will significantly 

decrease the accuracy of the developed model in ANSYS. 

The volume of total aggregates and maximum size of 

coarse aggregate are two effective features of aggregates 

in the developed ANFIS models. Among all the input 

data, the maximum size of aggregate has the least effect 

on CS. Furthermore, the aggregate volume above 35% of 

the mixture volume has decreasing effect on CS. 

Effect of the total aggregate volume on CS of SCC is 

higher than the effect of the maximum size of aggregates. 

CS of SCC is more sensitive to the aggregate volume 

rather than powder volume in the mixture.  

Exceeding the powder volume above 500 kg/m
3
 will 

reduce CS. In addition slump flow cannot be a good 

benchmark to estimate CS of SCC. 
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