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Abstract—Vibration-based structure health monitoring 

technique detects the damage by observing the change in 

dynamic characteristics of the structure. Change in dynamic 

characteristics due to operational and environmental 

variation may confuse with the change due to damage in the 

structure resulting false alarm of the damage. In SHM, data 

normalization technique can be used to suppress the adverse 

effect due to different operational and environmental 

variability. In this paper, a data normalization approach 

based on error prediction model is presented that estimates 

the residuals of the vibration feature due to damage. 

Damage is detected by processing the residual errors after 

applying Principal Component Analysis (PCA) on vibration 

features. The residual errors due to operational and 

environmental variabilities are optimally minimized 

through the best reconstruction of vibration features using 

an optimal number of principal components. The Variance 

of Reconstruction Error (VRE) is applied to obtain the 

optimum number of principal components for best 

reconstruction of vibration features. Relative standard 

deviation of the residual errors is used as damage index that 

quantifies the level of the damage in the structure. The 

proposed approach is validated on a benchmark problem of 

detecting damage in a three-story building under different 

operational and environmental variabilities. A comparative 

analysis is performed with previously reported work for 

damage detection to test the efficacy of the proposed 

algorithm. 

 

Index Terms—auto-regressive model, principal component 

analysis, variance of reconstruction error, data 

normalization, damage index 

 

I. INTRODUCTION 

In Structural Health Monitoring (SHM), anomalies 

detection in civil structures under varying environmental 

condition is a challenging problem. The change in 

vibration features is employed to detect the damage in the 

structure. The various operational and environmental 

variabilities have an influence on the dynamic 

characteristics of the structure. The change in vibration 

features under operational and environmental variations 
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may have reduced the sensitivity to damage sensitive 

feature resulting false alarm [1], [2]. In SHM, the data 

normalization process is stated as the process of 

separating the change in the vibration feature due to 

operational and environmental variabilities from the 

changes due to damage on the structure. To address the 

issue, data normalization technique can be performed to 

eliminate the adverse effect due to varying operational 

and environmental condition from the vibration features 

[3].  

Vibration responses of the structure are used for 

continuous monitoring of the structure. An advantage of 

these approaches is that no need to measure 

environmental parameters such as temperature, 

temperature gradient, humidity, etc. explicitly. In these 

approaches, operational and environmental variabilities 

are considered as implicitly embedded in structural 

response. In literature, few data normalization method 

have been proposed to address this problem. In last 

decades, researchers have proposed many algorithm for 

damage detection under varying operational and 

environmental conditions [4]-[7]. Figueiredo et al. [6] 

have discussed four different data normalization 

approaches based on machine learning algorithm for 

damage detection. They have compared four different 

machine learning algorithms for damage detection based 

on (i) Auto-Associative Neural Network (AANN), (ii) 

Factor Analysis (FA), (iii) Mahalanobis squared distance 

(MSD), and (iv) Singular Value Decomposition (SVD). 

They found that AANN and MSD based algorithms had 

better performance to detect damages compare to FA and 

SVD based algorithms when the safety of people will be 

the primary concern. 

Yan et al. [8] have proposed a damage detection 

method for SHM under varying operational and 

environmental condition using Principal Component 

Analysis (PCA). They have used first six natural 

frequencies of the structure as vibration feature to detect 

damage in simulated 3-span bridge structure. The 

environmental effects are eliminated from the vibration 

features by discarding first few Principal Components 

(PCs) during the reconstruction of feature vectors. The 

selection of the number of principal components is 
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crucial task in real-time application because the number 

of environmental effects and the source of unpredictable 

noise is not known beforehand. The vibration features 

which are more sensitive to damage that are also sensitive 

to varying operational and environmental conditions. In 

the SHM, it is desirable to have a damage sensitive 

feature that has to be correlated with the level of the 

damage in the structure. In literature, many SHM has 

used frequency response function, natural frequencies, 

mode shapes, mode shapes curvature, etc. as damage 

sensitive features. However, these features need to be 

extracted from vibration signal measured in a very 

controlled environment that is very difficult in real-time 

applications [4]. On the other hand, Auto-Regressive (AR) 

coefficients are extensively used as damage sensitive 

feature that are related to the natural frequencies and 

damping of the structure [9], [10]. Also, it is very easy to 

estimate the AR coefficients from the vibration signals. 

In this paper, a data normalization approach with 

respect to various operational and environmental 

conditions is presented based on Error Prediction Model 

(EPM). EPM is developed using the vibration features 

extracted from the undamaged structural response. In this 

work, AR coefficients are used as vibration features to 

detect the damage in the structure. EPM uses the 

Principal Component Analysis (PCA) to minimize the 

residuals of the vibration feature employing an optimum 

number of Principal Components (PCs). The optimum 

number of PCs is selected based on best reconstruction 

criterion called Variance of Reconstruction Error (VRE) 

criterion. VRE criterion optimally divides the eigenspace 

in two optimal subspaces: Principal Component Subspace 

(PCS) and Residual Subspace (RS). After, modelling the 

EPM using undamaged vibration features, residual errors 

are estimated for all test feature vectors by eliminating 

the portion in PCS. The portion of vibration feature 

vector in PCS is eliminated to suppress the effect of 

operational and environmental variabilities. Relative 

standard deviation of the residual errors is used as 

damage index that quantifies the severity of the damage 

in the structure. 

Rest of the paper is organized as follows. The 

estimation of AR coefficients as damage sensitive 

features is discussed in Section II. Section III describes 

the proposed algorithm for damage detection. The 

description of the vibration data used in damage detection 

process is described in Section IV. The validation of the 

proposed algorithm using collected vibration data is 

discussed in Section V. Finally; the paper is concluded in 

Section VI. 

II. DAMAGE SENSITIVE FEATURE EXTRACTION 

Vibration signals are collected from the multiple 

sensors placed on the structure to be monitored. Auto-

regressive coefficients as damage sensitive features are 

estimated from the collected vibration data using AR 

model. A linear dynamic system can be modelled by 

using AR model that describes a time-varying process 

where current output series depends linearly on the 

previous value of the series. AR coefficients are 

extensively used as damage sensitive feature in many 

SHM applications [6], [10], [11]. The AR model of order 

d  can be described as [12]. 

 
1

( ) ( ) ( )
d

j x

j

x k x k j e k


     (1) 

where, ( )x k  denotes the output sequence of the system in 

terms of previous output sequence and ( )e k  random 

error of the model at thk  instance. 
j  corresponds to the 

thj  order AR coefficient. The unknown AR coefficients 

can be estimated using Yule-Walker equation or least 

square method. In this paper, least square method is 

adopted to estimate the AR coefficients from the 

vibration signal. The optimal order of the AR model 

described the dynamic behavior of structure uniquely. 

The optimal order of the AR model is obtained using 

Akaike Information Criterion (AIC) [12] discussed in 

Section V. AIC is a measure of the best fit of an 

estimated statistical model that is based on the trade-off 

between the number of estimated parameters. The AIC 

can be defined in the context of AR model as 

 ln( ) 2t dAIC N N    (2) 

where, 
tSSR N the average sum-of-square residual 

(SSR) errors, 
dN  is the number of estimated parameters 

and 
tN  the number of predicted data points. To study the 

influence of autoregressive model order on damage 

detection, one may refer to [13]. The extracted damage 

sensitive features from the multiple sensors (mounted on 

the structure) are appended to form a dynamic 

characteristic feature vector. This feature vector uniquely 

defines the dynamic behavior of the whole structure. 

III. PROPOSED ALGORITHM 

The dynamic characteristic features are extracted from 

all the vibration signals collected from the undamaged 

and damaged structure. A training feature 

matrix, m pX  , can be constructed using a p  number 

of m  dimensional vibration feature vector extracted from 

undamaged vibration data collected in p different 

operational and environmental conditions. The training 

feature matrix can be obtained as in (3). 
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where thi  column of the training 

feature matrix X corresponds to the undamaged 

structural condition in thi  operational and environmental 

condition. However, test feature matrix 
m nZ   in (4) 

contains n feature vectors extracted from both 

undamaged and damaged vibration data. 
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where 
thi column of the test feature 

matrix Z corresponds to the unknown structural 

condition to be monitored. To construct an EPM, training 

feature matrix X  is processed through PCA. PCA is a 

statistical procedure that allows us to identify the 

principal direction in which data varies. By suppressing 

those variations in vibration features, the various 

operational and environmental conditions can be 

suppressed. 
PCA is applied to obtain a linear transformation of the 

training matrix X  that can be decomposed into a score 

matrix T and a loading matrix P as given in (5). 

 TX P T   (5) 

The columns of the matrix P  represent the 

eigenvectors 
1 2 mp p p  corresponding to eigenvalues 

1 2 m   of the covariance matrix  . The principal 

components of X  are the eigenvalues of the covariance 

matrix. Therefore, in this paper principal components and 

eigenvectors are used interchangeably. Here, the 

covariance matrix is defined as in (6) for zero-mean 

scaled X . 

 { }T TXX P P      (6) 

where, 
1 2

m m

mdiag      is a diagonal 

matrix with eigenvalues arranged diagonally in 

decreasing order such that 

 
1 2 0l m           (7) 

It can be easily verified that m l eigenvalues of   

are approximately equal to 2 , that is, 

2

1 2l l m                              (8) 

    (9) 

Therefore, it is assumed that change in the variance 

due to different structural conditions is equally distributed 

along all eigenvectors. Whereas, the effect due to various 

operational and environmental conditions influences the 

first l  largest eigenvectors. Yan et al. [8] have suggested 

that first few eigenvectors corresponding to higher 

eigenvalue are significant for the change in vibration 

features due to various operational and environmental 

factors. Where the number of dominant eigenvectors 

corresponds to the number of environmental variabilities 

and unpredictable noise. In practical application, it is very 

difficult to anticipate the factors that influence the 

vibration features. 

In SHM, the number of environmental parameters and 

unpredictable noise is very difficult to find if the structure 

is complex and exposed to the open environment. In this 

paper, the covariance-based Variance of Reconstruction 

Error (VRE) method is applied to determine the optimum 

value of l . Qin and Dunia [14] have proposed a new 

approach to determine the optimum number of 

eigenvector for the best reconstruction in the field of 

process control. The advantage of the VRE method is that 

it has a global minimum corresponding to best 

reconstruction. According to Qin and Dunia, the variance 

of reconstruction error in the direction of thi eigenvector 

is defined as 

  
 

2
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The variance based weighting factor is used to equalize 

the importance of vibration feature along each 

eigenvector. 

To select the optimum number of PCs for best 

reconstruction, VRE procedure can be summarized as 

follow: 

 Decompose the training feature matrix using PCA 

to find the eigenvector and corresponding 

eigenvalues. 

 Reconstruct individual training feature vector 

using other training feature vector and calculate 

the VRE, 
iu . 

 Calculate the total VRE for all the eigenvectors 

using (12). 

 Select the optimum number of PCs that gives the 

minimum VRE, which corresponds to the best 

reconstruction. 

After finding the optimum number of PCs for best 

reconstruction, the test feature vector 
iz  is reconstructed 

using optimum number of PCs and residual errors e  are 

computed as 

 ˆ
i ie z z    (13) 

where iz  is the thi  column of the test feature matrix Z . 

ˆ
iz  is the best-reconstructed test feature vector using the 

optimum number of eigenvectors of EPM. We observed 

that standard deviation of the residuals change drastically. 

Therefore, we have computed the relative standard 

deviation of the residuals as damage index (DI) that can 

be defined as 

 i

i

i 



  (14) 

where, i  and i  are the standard deviation and mean of 

the residuals corresponding to thi  test feature vector 
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i
 denotes the thi column of identity matrix m mI  . 

The variance of reconstruction error,
iu , need to minimize 

with respect to l . To obtain the optimum number of PCs, 

the VRE can be defined as



respectively. The DI defines the extent of damage in the 

structure. 

IV. DATA DESCRIPTION 

The efficacy of the proposed algorithm is tested using 

experimental vibration data collected from Los Alamos 

National Laboratory website available publicly for 

experimental evaluation [15]. The three-story frame 

structure consists of columns and plates assembled using 

bolted joint as shown in Fig. 1.    

Figure 1.  Three story building [15]. 

   

Figure 2.  Three story frame with basic dimensions (all dimensions are in cm) [15] 

The dimensions of the three-story frame structure are 

shown in Fig. 2. For more detail about the geometry of 

the structure and excitation to the structure for the data 

collection, one may refer to [6]. The whole structure is 

modelled to emulate a breathing crack in the structure 

under various operational and environmental conditions. 

Additionally, a center column was suspended from the 

middle of the top floor to introduce a non-linear behavior 

of the structure when the column contacts a bumper 

mounted on the next floor. The gap between the bumper 

and the center column denotes the level of damage 

introduced in the structure that corresponds to the width 

of the breathing crack. The different operational and 

environmental conditions are emulated through reducing 

the stiffness of the various columns and adding mass at 

different floors. The stiffness of columns is reduced by 

means of replacing that column with a column having 

half area of cross section. Various state conditions with 

level and description are given in Table I. Nomenclature 

for column 1AD corresponds to column of first floor 

intersecting plane A and D. A, B, C, and D correspond to 

four faces of the three-story frame structure. Similarly, 

other nomenclatures are used.  

Structural state condition described in Table I are 

classified in four groups. State#1 is categorized in the 

first group that indicates the baseline condition of the 

structure. The second group of state condition consists of 

State#2-State#9 that are collected from the undamaged 

structure under various operational and environmental 

conditions. The operational and environmental 

variabilities are emulated through reducing stiffness and 

adding mass-load at various location of the structure. 

Various level of damages were introduced in the structure 

with the help of bumper and center column to simulate 

State#10-State#14 (third group). Varying the gap between 

bumper and center column controls the level of damage. 
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A Higher value of the gap corresponds to the low level of 

damage whereas smaller gap corresponds to a high level 

of damage. In the last group, to consider the more 

realistic state conditions, damages were simulated in 

addition to the mass and stiffness changes to consider the 

operational and environmental variabilities (State#15-

State#17). 

TABLE I.  STRUCTURE STATE CONDITION WITH DESCRIPTION 

Label State Condition Description 

State#1 Undamaged Baseline condition 

State#2 Undamaged Added mass (1.2 kg) at the base 

State#3 Undamaged Added mass (1.2 kg) on the 1st floor 

State#4 Undamaged Stiffness reduction in column 1BD 

State#5 Undamaged Stiffness reduction in column 1AD and 1BD 

State#6 Undamaged Stiffness reduction in column 2BD 

State#7 Undamaged Stiffness reduction in column 2AD and 2BD 

State#8 Undamaged Stiffness reduction in column 3BD 

State#9 Undamaged Stiffness reduction in column 3AD and 3BD 

State#10 Damaged Gap (0.20 mm) 

State#11 Damaged Gap (0.15 mm) 

State#12 Damaged Gap (0.13 mm) 

State#13 Damaged Gap (0.10 mm) 

State#14 Damaged Gap (0.05 mm) 

State#15 Damaged Gap (0.20 mm) and mass (1.2 kg) at the base 

State#16 Damaged Gap (0.20 mm) and mass (1.2 kg) on the 1st floor 

State#17 Damaged Damaged & Gap (0.10 mm) and mass (1.2 kg) on the 1st floor 

 

V. RESULTS AND DISCUSSION 

 

Figure 3.  Average AIC value for different order of AR model. 

In this section, the proposed algorithm is validated 

using dynamic characteristic features extracted from the 

vibration data as described in the previous section. AR 

coefficients are used as dynamic characteristic features 

for damage diagnosis. Each state condition were 

emulated for 100 times resulting 900 undamaged data 

(state#1-State#9) and 800 damaged data (state#10-

State#17). The training dataset contains 50 undamaged 

data selected randomly from each undamaged state. 

Remaining 450 undamaged structural states and 800 

damaged structural states are used for testing purpose. 

Dynamic characteristic features are extracted from 

structural responses collected from four accelerometers 

placed on each floor (shown in Fig. 2). Optimal order of 

AR model is selected based on Akaike Information 

Criterion (AIC) value. The average AIC value of 100 

baseline conditions (State#1) is obtained for the different 

order of AR model in the range of 1-25. From Fig. 3, it 

can be observed that there is no significant change in the 

AIC value after 10th order AR model. Therefore, optimal 

order of the AR model is selected as 10. The vibration 

features, extracted from all four channels, are appended 

resulting in a 40-dimensional feature vector. Training 

matrix 40 450X   is constructed using 450 undamaged 

40-dimensional vibration feature vectors. Remaining, 

vibration feature vectors corresponding to undamaged 

and damaged structural condition constitute a test feature 

matrix 40 1250Z  . 

 

Figure 4.  VRE vs. number of PCs. 

Error prediction model is developed using training 

matrix after applying PCA. Using PCA, the eigenvectors 

are calculated from the covariance matrix m mS   of 

the training matrix X . The obtained eigenvectors 

constitute an eigenspace that can be divided optimally 

(PCS) and  Residual Subspace (RS) using VRE. The 

portion in PCS has a tendency to increase with the 

number of PCs, and that in the RS has a tendency to 

decrease, resulting in a minimum in VRE [16]. The 
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optimum number of PCs is obtained by selecting a 

number of PCs corresponding to minimum VRE. The 

optimum number of PCs can be used to reconstruct the 

vibration feature vector to predict the residual error. The 

VRE for the different number of PCs is plotted in Fig. 4. 

For the EPM of training matrix, the optimum number 

of PCs is obtained at 29l   for best reconstruction of the 

training feature vectors. Therefore, all test feature vectors 

are reconstructed using first 29 PCs of the training matrix, 

and residual errors are calculated. It was observed that 

mean of the residual errors varies significantly. Therefore, 

the coefficient of variation that is the ratio of the variance 

to the mean of residual error is considered as damage 

sensitive index. 

The proposed damage detection technique is compared 

with earlier reported damage detection method based on 

AANN [17] and MSD [18]. AANN based damage 

detection approach trains the network to realize the non-

linear PCA to learn the correlation between the vibration 

features of the training matrix X . The non-linear PCA is 

used to perform identity mapping employing AANN 

where the network tries to reproduce the input at the 

output with minimum error. If the input feature vector 

corresponds to the undamaged structure condition, then 

the network is able to reproduce the feature at the output 

with minimum error. On the other hand, if the input 

feature vector corresponds to the damaged structure then 

reproduction error will increase significantly. The more 

detail about the architecture of the AANN for damage 

classification under varying operational and 

environmental condition can be found in the reference 

[17]. Another most adopted damage detection approach is 

based on Mahalanobis square distance. In MSD based 

data normalization approach [10], [18], Damage index of 

any test feature vector 
iz is defined as: 

      1T

i iDI i z x z x     (15) 

where, x  and m m are mean vector and covariance 

matrix of training matrix X . The DIs corresponding to all 

test feature vector using MSD, AANN and proposed 

methods are calculated. For the better comparison, 

Receiver Operating Characteristic (ROC) curves for 

MSD, AANN, and proposed technique are plotted in Fig. 

5.  

   
(a) 

 
(b) 

Figure 5.  ROC curve for each algorithm: (a) linear scale, (b) zoomed 
to highlight the difference between curves. 

ROC curve represents the performance of the binary 

classifier where the True Positive Rate (TPR) is plotted 

against False Positive Rate (FPR) for various threshold 

values. The perfect classification will be obtained if the 

ROC curve approaches to top left corner of the ROC 

space. From Fig. 5, it can be observed that ROC curve 

corresponding to proposed algorithm is closest to (0, 1) 

coordinate of the ROC space compare to other 

approaches. It shows that proposed technique has better 

classification performance compared to other methods. In 

SHM, Type I (False negative) and Type II (False positive) 

errors are used to test the capability of the damage 

detection approaches. Type I error is related to the 

maintenance cost whereas the Type II error corresponds 

to the safety. To find the Type I and Type II error, a 

threshold value is decided based on the 98 % cut-off 

value over training data. Table II summarizes the number 

of Type I and Type II error in terms of the number of data 

sample for each algorithm. 

It can be observed that proposed algorithm 

outperforms over MSD- and AANN-based damage 

detection approaches in terms of Type I and Type II error. 

The overall performance of the proposed technique is 

obtained 98.32 \%. 

TABLE II.  NUMBER OF TYPE I AND TYPE II ERROR 

Algorithm 
Error 

Type I Type II Total (in %) 

MSD 78 8 86 (93.12) 

AANN 33 14 47 (96.24) 

EPM (proposed) 8 13 21 (98.32) 

 

The DI for the all test feature vectors with the 

threshold are plotted in Fig. 6. The calculated DIs are 

plotted along Y-axis vs test sample number on X-axis. 

The DIs corresponding to first 450 test samples is for 

undamaged vibration data represented by blue dots. The 

DIs corresponding to remaining 800 test samples is for 

damaged vibration data represented by red dots. 

It can be observed that DI corresponding to 

undamaged structural condition using MSD-and AANN-
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based approaches has more variations compare to 

proposed algorithm that shows that proposed model is 

more efficient to nullify the operational and 

environmental effect from the vibration features. It is 

already stated that DI has to be a linear relationship with 

the level of damage. Here, the level of damage is defined 

as the gap between the bumper and center column (depth 

of the crack). It will be worth to note that DI obtained 

through MSD-and AANN-based approaches not varying 

linearly with damage level under various operational and 

environmental condition. Whereas, DI has a linear 

relationship with the level of damage using proposed 

algorithm. 

  
(a) 

 
(b) 

 
(c) 

Figure 6.  Damage detection using three different approaches with 
threshold value. Blue dots and red dots correspond to the DIs for the 

undamaged and damaged structure conditions. 

VI. CONCLUSION 

Error prediction model based data normalization 

technique under varying operational and environmental 

condition has been proposed. The proposed technique 

computes the residual error based on the variance of 

reconstruction error criterion. An optimum number of 

principal components for best reconstruction of vibration 

features are obtained through VRE criterion. The relative 

standard deviation of the residual error is found to be a 

damage sensitive index that has the linear relationship 

with the level of damage. The proposed algorithm is 

validated using the standard vibration data of the three-

story frame structure and compared with earlier methods 

used for data normalization in SHM. The EPM-based 

approach for damage detection assigns a consequential 

damage index to the different level of damages. Proposed 

technique reduces the Type II error along with Type I 

error to reduce the maintenance cost and increases the 

reliability of the structure. Therefore, the proposed 

technique can be used for damage detection in real-time 

application under varying operation and environmental 

conditions. 
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