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Abstract—Accurate prediction of the compressive strength 

of High-Performance Concrete (HPC) is crucial in concrete 

design and construction. However, HPC is a very complex 

material, as the inter-relationship between its constituent 

materials is highly nonlinear and its property is affected by 

several interacting factors. Hence, existing conventional 

empirical and statistical methods are limited in their ability 

to accurately predict the compressive strength of HPC. In 

this study, the application of three artificial intelligence 

techniques, namely, the Artificial Neural Network (ANN), 

Fuzzy Inference System (FIS), and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) techniques, are explored. A data-

driven approach based on fuzzy c-means clustering (FCM) 

is employed to generate both the Mamdani and Sugeno FIS 

models. Different model structures and parameters—such 

as number of neurons and choice of transfer function for the 

ANN technique, and number of clusters and choice of 

fuzzification coefficient and inference methods for the FIS 

and ANFIS techniques—are optimized to improve the 

accuracy of each technique. Results of this study indicate 

that ANFIS and ANN perform better than the FIS models in 

predicting the compressive strength of HPC. The main 

contributions of this paper are: (1) providing accurate 

concrete compressive strength prediction models that 

represent the complex, nonlinear relationship between the 

constituent materials and concrete compressive strength; (2) 

presenting a data-driven methodology for the development 

of FIS concrete compressive strength models; and (3) 

subjecting artificial intelligence-based concrete compressive 

strength models to structure and parameter optimization to 

improve prediction accuracy.    

 

Index Terms—high-performance concrete, compressive 

strength, artificial neural network, fuzzy inference system, 

adaptive neuro-fuzzy inference system 

 

I. INTRODUCTION 

Concrete is the most versatile and widely used 

construction material. The reasons for concrete’s 

dominance are varied, but among the most important are: 

the economy and widespread availability of its 

constituent materials; its ability to be molded into any 

desired shape; its adoptability and sustainability; and its 

high compressive strength, stiffness, and durability [1], 

[2]. Concrete is categorized according to purpose, range 
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of compositions, finishes, and performance characteristics. 

Lightweight, heavyweight, high-strength, high-

performance, self-compacting, and fiber-reinforced are 

among the most widely available concrete types. 

According to the American Concrete Institute (ACI), 

High-Performance Concrete (HPC) is that “meeting [a] 

special combination of performance and uniformity 

requirements that cannot always be achieved routinely 

using conventional constituents and normal mixing, 

placing, and curing practices” [3]. Most prevailing 

definitions for HPC emphasize properties such as high 

strength, high workability, dimensional stability, and 

durability [4]. In addition to common concrete 

ingredients (aggregates, sand, and cement), 

supplementary cementitious materials—principally, fly 

ash and blast furnace slag—and chemical admixtures, 

such as superplasticizer, are used in preparation of HPC 

to improve performance and economic return [2], [4]. 

Compressive strength is the most important 

mechanical property of concrete, since it is primarily used 

as quality control and compliance criteria in standards 

and specifications. Moreover, most of the important 

properties of concrete, including flexural strength, direct 

tensile strength, splitting tensile strength, and modulus of 

elasticity, are directly related to compressive strength [5]. 

Thus, proper prediction of concrete compressive strength 

is vital to schedule and manage concrete works such as 

formwork removal and pre- or post-tensioning activities 

[6]. In the past, several techniques based on either 

empirical methods (statistical evaluation of relationships) 

or computational modeling have been tested, and 

empirical methods based on Multi-Linear Regression 

(MLR) have been commonly proposed to predict 

compressive strength. However, most of the available 

empirical models do not account for the mineral and 

chemical admixtures used in HPC [7], [8]. Moreover, the 

numbers of interacting factors influencing the 

compressive strength of HPC are very high and the 

relationship between these factors is not precisely known 

because it is considered to be highly complex and 

nonlinear [6], [8]. Therefore, the empirical methods are 

limited in their ability to accurately predict the 

, 

such as the Artificial Neural Network (ANN), Fuzzy 
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compressive strength of HPC. Alternative modeling 

methods employing Artificial 



Inference System (FIS), and Adaptive Neuro-Fuzzy 

System (ANFIS) techniques, provide a flexible 

environment better suited to dealing with such a complex, 

nonlinear relationship. 

In the past two decades, AI-based modeling methods 

have been extensively used in wide-ranging civil 

engineering applications including modeling of material 

behavior, determination of concrete mix proportion, and 

prediction of strength [9], [10]. Yeh [4] applied ANN to 

predict the compressive strength of HPC, and found that 

these predictions are more accurate than those obtained 

from an MLR model. Similarly, Ozturan, Kutlu, and 

Ozturan [11] compared the prediction accuracies of 

ANN- and MLR-based models, and concluded that using 

ANN provides the best result. Topcu and Saridemir [9] 

developed ANN and FIS models to predict the 

compressive strength of concrete containing fly ash at 

different strength-gain ages. Similarly, Ozcan, Atis, 

Karahan, Uncluoglu, and Tanyildizi [12], Topcu and 

Saridemir [13], and Aggrawal and Aggrawal [14] adopted 

ANN and FIS to predict the compressive strength of silica 

fume concrete, recycled aggregate concretes containing 

silica fume, and self-compacting concrete, respectively. 

Overall, their findings affirmed that ANNs and FIS 

models have very promising potential to accurately 

predict the compressive strength of concrete. Vakshouri 

and Najadi [5] applied different optimization methods 

and membership functions in an ANFIS to predict the 

compressive strength of High-Strength Concrete (HSC) 

based on splitting tensile strength and modulus of 

elasticity. Badde, Gupta, and Patki [15] used FIS- and 

ANFIS-based models to predict the 28-day compressive 

strength of Ready-Mixed Concrete (RMC) and concluded 

that for this application, the ANFIS approach has a better 

predictive capability than the FIS. Aydin, Tortum, and 

Yavuz [16] employed an ANFIS to predict the elastic 

modulus of normal- and high-strength concrete based on 

compressive strength and compared the results with the 

values obtained from codes. 

The accuracy of ANN models largely depends on the 

architecture, function, and parametric properties of the 

network. However, the effect of these properties on 

model accuracy was not thoroughly investigated in most 

of the aforementioned research. In addition, most of the 

FIS and ANFIS models developed for prediction of 

compressive strength heavily rely on expert knowledge to 

establish the fuzzy inference rules, rather than using a 

data-driven approach. Expert-based models have a critical 

shortcoming: their rules are highly prescriptive, very 

general, and difficult to develop due to the high-

dimensionality of the problem [17]. However, a FIS’s 

inability to learn from data and develop and optimize 

model parameters is a major limitation. Thus, hybridizing 

a model by combining the FIS technique with other AI 

techniques, such ANNs, could improve learning 

capabilities; however, this approach has rarely been used 

to predict compressive strength of HPC. 

The major objective of this paper is to develop and 

compare three artificial intelligence models based on 

ANN, FIS approach using fuzzy C-means clustering 

(FCM), and ANFIS approach to predict the compressive 

strength of HPC. The different model parameters, such as 

number of neurons and type of transfer function in the 

case of ANN, and number of clusters, fuzzification 

coefficient (m-value), and selection of inference methods 

for FIS and ANFIS will be optimized to improve model 

accuracy and to overcome challenges associated with 

each approach. 

Section II of this paper gives an overview of AI 

modeling techniques and introduces the structure and 

components of each model. In Section III, the data set 

used to develop the AI models is explained and the 

details of each model’s implementation, including model 

structure and parameters, are demonstrated. The results 

obtained by adopting these models are presented and their 

performances in prediction accuracy are compared and 

contrasted. Finally, conclusions and recommendations are 

presented in Section IV. 

II. ARTIFICIAL INTELLIGENCE MODELING 

TECHNIQUES 

In the following sections the structure and components 

of the three   Artificial   Intelligence (AI) modeling 

techniques used in this study, namely, Artificial Neural 

Networks (ANNs), Fuzzy  Inference  System (FIS), and 

Adaptive Neuro-Fuzzy System (ANFIS) are briefly 

discussed. 

 

Figure 1. Typical architecture of an ANN with two hidden layers. 

A. Artificial Neural Networks 

ANNs are information-processing systems whose 

architecture imitates the learning capability of the human 

brain [8], [9]. Neurons are the fundamental building 

blocks of ANNs and they are logically arranged into a 

single or multiple layers. Fig. 1 shows the architecture of 

a two-hidden-layer network with k inputs and n outputs. 

The neurons in each layer are linked to all neurons in the 

next layer through weighted connections. The output of 

each neuron in the initial layer is communicated to the 

neurons in the next layer through an activation function 

[11], [14]. According to Boussabaine [18], even though 

there are a range of ANN types differing in architecture 

and mode of operation, ANNs generally include the 

following components: (1) a set of processing neurons, (2) 

a state of activation for each neuron, (3) a pattern of 

connectivity among the neurons, (4) a propagation 
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method, (5) an activation rule, (6) an external 

environment, and (7) a learning method.  

Most practical applications of ANNs are based on 

multi-layer feedforward architecture comprised of an 

input layer, one or more hidden layers, and an output 

layer (Fig. 1) with a back-propagation learning algorithm 

that adopts a gradient-descent method to minimize the 

margin of error between the neurons of the desired target 

and those of the outputs [4], [14]. References [14] and 

[19] discuss ANN theory and the mathematical 

formulation of the back-propagation algorithm in detail. 

ANNs provide learning capability, robustness, 

generalization, parallel processing, and non-linearity, 

making them advantageously able to accurately model the 

mechanical behavior of concrete [9], [10].  

B. Fuzzy Inference System 

Fuzzy sets were first introduced by Lotfi Zadeh in 

1965 to deal with uncertainty and imprecision, which are 

commonly encountered in real world applications [12], 

[17]. The underlying notion in fuzzy sets is that an object 

belongs to different classes/subsets of the universal set 

with unsharp boundaries in which membership is a matter 

of degree of belongingness. This is unlike set theory, 

which deals with only two possibilities, i.e., 0 (non-

membership) or 1 (full-membership). The partial 

belongingness to a set is easily described numerically by 

using a Membership Function (MF), which assumes 

values between 0 and 1, inclusively [20]. FISs are models 

composed of conditional if-then rules, where a collection 

of fuzzy sets represented by MFs provides a system for 

reasoning about a certain problem. In the case of 

Mamdani FIS models, the conclusion is represented as a 

fuzzy set, and defuzzification is employed to obtain a 

crisp output value. In Sugeno FIS models, the conclusion 

is represented using a function [17]. Interpretability, 

ability to represent complex relations, and capability to 

deal with both subjective and objective variables are 

some of the most important advantages of FISs. Fuzzy 

rules are capable of capturing all possible relationships 

between input and output variables, and are useful to 

construct models of complex systems using domain 

knowledge, experience, and experimental data [17]. A 

typical FIS architecture has five basic components: the 

input interface; the rule base, which contains the fuzzy if-

then rules; the database, which defines the MFs used in 

the fuzzy rules; fuzzy inference, which performs the 

inference procedure based on the rules; and the output 

interface. Multiple-input single-output fuzzy rules 

generally assume the following form: If input1 is Ai and 

input2 is Bj …and inputn is Ct then output is Du, where Ai, 

Bj,…, Ct, and Du are fuzzy sets defined in the 

corresponding input and output spaces, respectively.  

According to Pedrycz and Gomide [17], expert-based 

and data-driven are the two fundamental approaches 

available for constructing FIS models. In expert-based 

FISs, the rules are formulated by experienced experts 

fluent in the basic concepts and variables associated with 

a problem under investigation. Expert-based FIS models 

have access to readily available and easily quantified 

knowledge, facilitate easy addition and modification of 

rules, and are easily communicated and interpreted, as 

natural language is used as descriptors for variables [17]. 

However, there are notable shortcomings associated with 

this approach: the rules are highly prescriptive and very 

general; it is difficult to establish rules when dealing with 

high-dimensionality problems, as for a problem of 𝑛 

input variables with 𝑝 linguistic values, the complete rule 

base will require 𝑁 = 𝑝𝑛  rules; and it is challenging to 

ensure completeness and consistency of the rules when 

the number of rules increases [21].  

The data-driven approach captures the main structure 

and relationship existing in the data by automatically 

transferring the numeric data into fuzzy sets, which 

contribute to the construction of the rule-based system 

[22]. This can be achieved by employing different 

clustering techniques, such as k-means clustering, 

subtractive clustering, and fuzzy c-means clustering 

(FCM). In this study, the FCM technique is adopted to 

generate the fuzzy if-then rules. In contrast to the expert-

based approach, the data-driven approach results in a 

reduced number of rules, enables the use of existing data 

to establish the rules, and is suitable for high-

dimensionality problems. However, loss of information 

and semantics, and marginalization of the role of the 

output are some of the drawbacks of data-driven 

approach [17], [22]. 

FCM is one of the most frequently used fuzzy 

clustering algorithms. In this technique, the data set is 

partitioned into the required number of clusters and each 

data point belongs to the clusters to some degree, as 

specified by the membership grade; thus, the degree of 

membership decreases when a data point is further from 

the cluster center, and vice versa. The main components 

of a FCM algorithm are: number of clusters (𝑐), objective 

function (𝑄), distance function, fuzzification coefficient 

(𝑚), and termination criteria [17]. For n-dimensional data 

set {𝒙𝑘}, 𝑘 = 1,2, … , 𝑛  FCM develops n-dimensional 

prototypes or cluster centers 𝒗𝑖(𝑖 = 1, 2, … , 𝑐)  by 

minimizing the objective function 𝑄, defined as:  

𝑄 = ∑ ∑ 𝑢𝑖𝑘
𝑚𝑑𝑖𝑘

2𝑛
𝑘=1

𝑐
𝑖=1    (1) 

subject to  

0 < ∑ 𝑢𝑖𝑘 < 𝑛𝑛
𝑘=1  and ∑ 𝑢𝑖𝑘 = 1𝑐

𝑖−1   (2) 

where 𝑢𝑖𝑘 is the membership degree of data 𝒙𝑘 in the i
th 

cluster, m is a fuzzification coefficient, and 𝑑𝑖𝑘  denotes 

the Euclidean distance from data 𝒙𝑘 to cluster center 𝒗𝑖. 

In FCM clustering, the values of 𝑢𝑖𝑘 and 𝒗𝑖 are iteratively 

updated using equations 3 and 4, respectively, until the 

termination criteria is met. The information obtained 

from FCM clustering can be directly used to generate a 

FIS (i.e., either a Mamdani or Sugeno FIS model) that 

best represents the underlying relationship of the data set.  

𝒗𝑖 =
∑ 𝑢𝑖𝑘

𝑚𝑥𝑘
𝑛
𝑗=1

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1
    (3) 

𝑢𝑖𝑘 =
1

∑ (
𝑑𝑖𝑘
𝑑𝑗𝑘

)

2 (𝑚−1)⁄
𝑐
𝑗=1

   (4) 
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C. Adaptive Neuro-Fuzzy Inference System 

The ANFIS was first proposed by Jang [23] for 

modeling highly nonlinear functions. An ANFIS is a 

hybrid and advanced FIS system that combines the 

linguistic interpretability and fuzzy reasoning of FIS and 

learning capability of ANN to map inputs into an output 

[5], [24]. An ANFIS is a FIS implemented in the 

framework of adaptive networks. According to Amani 

and Moeini [25], adaptive networks are “multi-layered 

feedforward structures whose overall output behavior is 

determined using the value of a collection of modifiable 

parameters”. The main feature of ANFIS is its ability to 

tune the modifiable parameters of membership functions 

in the antecedent and consequent through the learning 

process so that the system output better matches the 

training data. Fig. 2 depicts the architecture of a typical 

ANFIS with two inputs, each with two membership 

functions, two rules, and one output.  

 

Figure 2. ANFIS structure with two inputs and two rules. 

The ANFIS architecture shown in Fig. 2 comprises 

five different layers. The nodes in Layer 1 generate the 

membership functions of the inputs. The nodes in Layer 2 

perform as a simple multiplier and determine the firing 

strength of each rule, whereas the nodes in Layer 3 

normalize the firing strengths. The nodes in Layer 4 

compute the consequent parameters by taking the product 

of the normalized firing strength and a first order 

polynomial (in case of a first-order Sugeno FIS model). 

Finally, the overall output of the ANFIS is computed 

using the single node in Layer 5 by taking the summation 

of all outputs of Layer 4 [26], [27]. Each node in Layer 1 

and Layer 4 is adaptive, while the nodes in the rest of the 

layers are all fixed. For a first-order Sugeno FIS model, 

the two fuzzy rules can be expressed as: 

Rule 1: If 𝑥 is 𝐴1 and 𝑦 is 𝐵1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1  

Rule 2: If 𝑥 is 𝐴2 and 𝑦 is 𝐵2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

where, 𝐴1 , 𝐴2  and 𝐵1  and 𝐵2  are the membership 

functions for input 𝑥 and 𝑦, respectively; 𝑝1, 𝑞1, 𝑟1 and 𝑝2, 

𝑞2 , 𝑟2  are the parameters of the rule 1 and rule 2 

consequents, respectively [23]. 

III. MODEL IMPLEMENTATION AND RESULTS 

For the purpose of developing and optimizing the AI-

based concrete compressive strength predictive models, 

published data in HPC studies was reviewed. The most 

complete data set for HPC were provided by references [4] 

and [28]. The data set has 425 samples of the 28-day 

compressive strength of HPCs. HPC 28-day compressive 

strength is a function of seven input variables, namely, 

cement, fly ash,   Blast   Furnace  Slag (BFS), water, 

superplasticizer, coarse aggregate, and fine aggregate. 

Details of the input variables and descriptive statistics of 

the data set are presented in Table I. For model 

development and optimization, the data set was randomly 

divided into two: 70% of the data (300 records) were 

considered part of the training data set, and the remaining 

30% (125 records) were used to verify the accuracy of the 

trained models.  

TABLE I. DESCRIPTIVE STATISTICS OF THE DATA SET 

Attributes Minimum Maximum Mean Standard 
Deviation 

Cement (kg/m3) 102.00 540.00 265.44 104.67 

BFS (kg/m3) 0.00 359.40 86.28 87.83 

Fly ash (kg/m3) 0.00 200.10 62.79 66.23 

Water (kg/m3) 121.75 247.00 183.06 19.33 

Superplasticizer 

(kg/m3) 

0.00 32.20 6.99 5.39 

Coarse 

Aggregate 

(kg/m3) 

801.00 1,145.00 956.06 83.80 

Fine Aggregate 

(kg/m3) 

594.00 992.60 764.38 73.12 

Compressive 

Strength (MPa) 

8.54 81.75 36.75 14.71 

 

In line with the major objective of this paper, three AI 

models based on ANN, FIS approach using fuzzy C-

means clustering (FCM), and ANFIS models are 

developed and optimized so as to come up with a model 

that can accurately predict the compressive strength of 

high performance concrete. In the following sections, 

model implementation and results using the three AI 

techniques are presented. 

 

Figure 3. Architecture of an ANN for compressive strength prediction. 

A. ANN for Modeling Concrete Compressive Strength 

1) ANN architecture and parameters 

The predictive accuracy and generalization capability 

of ANNs are mainly affected by the selected architecture, 

and its associated network parameters. In this study, 

ANN models were developed using MATLAB NN 

Toolbox™ and different structures were examined by 

varying network parameters such as number of neurons in 
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the hidden layer (n) and transfer functions in both the 

hidden and output layers. The ANN models have seven 

input or independent variables (cement, fly ash, BFS, 

water, superplasticizer, coarse aggregate, and fine 

aggregate) in the input layer and one output or dependent 

variable (compressive strength) in the output layer (Fig. 

3). 

In developing the ANN models, a multi-layer 

feedforward back-propagation network with a single 

hidden layer was selected for its ability to approximate 

any function provided that sufficient neurons are used in 

the hidden layer [9], [12].  Ozturan, Kutlu, and Ozturan 

[11] summarized the different empirical criteria (as a 

function of the number of input and output variables) 

proposed by researchers to determine the number of 

neurons in the hidden layer.  

However, in this study, the effect of number of neurons 

(n) on the performance of the networks is investigated by 

sequentially increasing the number of neurons (from 2 to 

25 neurons). Basically, any type of differentiable transfer 

functions can be employed by neurons to generate their 

output. The effect of using the commonly employed 

transfer functions such as Log-Sigmoid (LOGSIG), Tan-

Sigmoid (TANSIG), and Linear (PURELIN) in the 

hidden and output layer is examined by considering 

different combinations. 

TABLE  

No. Properties Types/Values 

1 Architecture properties 

1.1 Network type Multilayer feed forward back 

propagation 

1.2 Number of inputs 7 

1.3 Number of network 

outputs 

1 

1.4 Number of hidden layers 1 

2. Function properties 

2.1 Network adaption function Gradient descent method 

(LEARNGDM) 

2.2 Network initialization 

function 

Randomized 

2.3 Network performance 

function 

Mean square error 

2.4 Network training function Levenberg-Marquardt (LM) 

3 Parameter properties 

3.1 LM training parameters 

 Minimum gradient 
 Validation checks  

 Maximum training 

epochs 
 Performance goal 

 Initial mu 

 mu decrease factor 
 mu increase factor 

 Maximum mu 

 

1x10-5 
6 

1000 

0 
0.001 

0.1 

10 
1x1010 

 

The data set (300 records) used to train the ANNs was 

randomly divided into three subsets, namely, training, 

validation, and test sets with a ratio of 0.7, 0.15 and 0.15, 

respectively. The Levenberg-Marquardt (LM) training 

algorithm, which uses a gradient descent method with 

momentum weight, was selected as training function, 

since it is the fastest and performs better on function 

fitting [29]. The performances of the networks during 

training were assessed based on the mean square error 

(MSE) performance function and the trainings are 

terminated using minimum gradient magnitude and 

validation checks (based on the number of successive 

iterations that the validation performance fails to 

decrease). The network parameters and values considered 

common for all the networks are summarized in Table II. 

The results of ANN models are presented and 

discussed in the following subsection. 

2) Results of ANN models 

Once the training of the ANNs was completed, the 

validation data set (125 records) was introduced to the 

networks to evaluate their predictive accuracy using the 

following error measures: Mean Absolute Error (MAE), 

Mean  Square  Error (MSE), root mean square error 

(RMSE), and coefficient of determination (R
2
). These are 

computed based on the predicted (compressive strength 

predicted by the networks) and actual values. The error 

measures used to compare the performance of the ANN 

models are defined as follows: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑡𝑖 − 𝑦𝑖|𝑁

𝑖=1    (5) 

𝑀𝑆𝐸 =
∑ (𝑡𝑖−𝑦𝑖)2𝑁

𝑖=1

𝑁
   (6) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑡𝑖−𝑦𝑖)2𝑁

𝑖=1

𝑁
   (7) 

𝑅2 = 1 −
∑ (𝑡𝑖−𝑦𝑖)2𝑁

𝑖=1

∑ (𝑡𝑖−𝑡�̅�)2𝑁
𝑖=1

   (8) 

where 𝑡𝑖  and 𝑦𝑖  are the i
th

 actual and predicted 

compressive strengths, respectively; 𝑡�̅�  is the average of 

actual compressive strength; and 𝑁 is the total number of 

validation data instances. A value of R
2
 = 1 indicates an 

exact linear relationship between the predicted and actual 

values. Thus, the network with minimum error values and 

maximum R
2
 can be selected as the optimum network for 

modeling the compressive strength. 

A total of 216 ANN models were developed by 

varying the number of neurons in the hidden layer (n) and 

the type of transfer function in the hidden and output 

layers. Since the predictive capability of ANN models 

developed using Log-Sigmoid transfer function on the 

output layer were extremely poor (R
2
 values ranging 

between 2.04 × 10
−31

 and 0.53), only the MAE and R
2
 

values of ANN models with Linear and Tan-Sigmoid 

transfer functions on the output layer are shown in figures 

4a and 4b, and Fig. 5a and 5b, respectively. As can be 

seen from these figures, ANN models developed using 

the LOGSIG and TANSIG transfer functions show better 

predictive performance based on MAE and R
2
 compared 

to models that use the PURELIN transfer function in the 

hidden layer. Moreover, the improvement in model 

accuracy performance due to the increase of the number 

of neurons in the hidden layer—where PURELIN was 

used for transfer function in the hidden layer—is not that 

significant (the maximum percentage increment attained 

in R
2
 was only 4%). 
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(a)                                                                                                                 (b) 

Figure 4. (a) MAE and (b) R  values of ANN models with linear transfer function on the output layer. 

     

(a)                                                                                                                (b) 

Figure 5. (a) MAE and (b) R2 values of ANN models with Tan-Sigmoid transfer function on the output layer. 

TABLE III. MODEL PERFORMANCE RESULTS OF BEST PERFORMING ANN MODELS 

 

Rank 

No. of 

neurons in 

the hidden 
layer (n) 

Type of transfer function Error measures  

R2 

Hidden 

layer 

Output layer  

MAE 

 

MSE 

 

RMSE 

1 24 LOGSIG PURELIN 4.03 30.41 5.51 0.86 

2 14 TANSIG PURELIN 4.18 30.65 5.54 0.85 

3 19 LOGSIG TANSIG 4.19 30.70 5.56 0.85 

4 13 LOGSIG PURELIN 4.43 34.43 5.87 0.84 

5 21 LOGSIG PURELIN 4.62 35.62 5.97 0.83 

6 14 LOGSIG PURELIN 4.70 37.45 6.12 0.83 

7 15 LOGSIG PURELIN 4.77 37.87 6.15 0.82 

8 8 TANSIG PURELIN 4.49 39.46 6.28 0.82 

9 5 TANSIG PURELIN 4.78 38.38 6.20 0.82 

10 25 LOGSIG TANSIG 4.83 38.19 6.18 0.82 

 

Table III shows error measures and R
2
 values of the 

top ten ranked ANN models along with their architecture 

and parameters. The best predictive ANN model 

(MAE = 4.03 and R
2 
= 0.86) is achieved when 24 neurons 

are considered in the hidden layer and LOGSIG and 

PURELIN transfer functions are used in the hidden and 

output layers, respectively.  

The R
2
 values in Table III indicate that the correlation 

between the predicted and actual compressive strengths is 

high enough to give a very good prediction. Overall, a 

better predictive accuracy is achieved when the 

PURELIN transfer function is used in the output layer. 

B. FIS for Modeling Concrete Compressive Strength 

1) FIS model structure and parameters 

Similar to the ANN models, two data sets were 

employed: the training set (300 records) was used to 

construct FIS models using FCM clustering, while the 

validation set (125 records) was used to evaluate the 

predictive accuracy of the models. Generally, 

development of FIS models from existing data is carried 

out in two major stages: structure identification and 

parameter estimation [30]. Structure identification deals 

with determining the input and output variables, choosing 
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the type of FIS, deciding on the type and number of 

membership function for the input and output variables, 

and deciding on the number of fuzzy rules, whereas, 

parameter estimation addresses the following FIS 

properties: number of clusters which also determine the 

number of rules, the fuzzification coefficient, and 

iteration information [14], [30]. In this study, FIS models 

were generated using “genfis3” function of MATLAB 

Fuzzy Toolbox
TM

 by varying the model structure and 

parameters. The “genfis3” is a built-in function that 

generates an FIS structure of a specified type, using FCM 

clustering to capture a set of rules that best represent the 

data behavior [31].  

The input and output variables used in developing the 

FIS models are the same as those used in ANN models. 

In FCM clustering, the number of clusters determines 

both the number of membership functions of the input 

and output variables, and the number of rules. For 

instance, if the number of clusters is three, there will be 

three rules, where each cluster represents a rule, and each 

input and output variable has three membership functions 

(Fig. 6). Pedrycz and Gomide [17] suggested that the 

number of clusters should be kept quite low (5 to 9) to 

ensure the interpretability of developed FIS models. 

However, in this study an attempt was made to 

investigate the effect of number of clusters on the 

predictive accuracy of FIS models; thus, the number of 

clusters varies from 3 to 30.  The fuzzification coefficient 

(m) is another essential parameter that affects the 

geometry of the membership function generated by FCM 

algorithm. The most commonly assumed value of m 

equals 2. While lower values of 𝑚 (closer to 1) result in 

localized membership values around 0 or 1, higher values 

of 𝑚 (m = 3, 4, etc.) yield spiky membership functions 

[17]. In this study, the following 𝑚  values were 

considered in developing the FIS models: 1.5, 2.0, 2.5, 

3.0, 3.5, and 4.0. Additionally, the FCM clustering 

process is set to terminate when the maximum number of 

iterations reaches 1000 or when the minimum amount of 

improvement between two consecutive iterations is less 

than 1 × 10
−5

.  

TABLE IV. SUMMARY OF INFERENCE METHODS USED FOR MAMDANI 

AND S MODELS 

Inference methods Mamdani Sugeno 

Fuzzy operator (AND) Min Product 

Implication Min Product 

Aggregation Max Sum 

Defuzzification Centroid Weighted average 

 

For comparison purposes, two sets of FIS models were 

developed using Mamdani and Sugeno inference types. In 

Mamdani-type inference, after the aggregation process, 

each output variable is expressed as a fuzzy set that needs 

to be defuzzified, whereas in Sugeno-type, the output 

membership functions are either linear or constant [14]. A 

Gaussian membership function is employed for the input 

and output variables of Mamdani FIS (Fig. 6), and for the 

input variables of Sugeno FIS. Also, the output function 

of the Sugeno FIS is represented using linear functions. A 

Gaussian membership function was adopted because of 

its continuity and smoothness, simplicity in 

representation (it needs only two parameters, modal value 

𝜇  representing the typical value and 𝜎  representing the 

spread), ease of construction using a data-driven 

approach, faster convergence during optimization of 

membership functions, and suitability for models that 

seek high-control accuracy [5], [31]. 

 

Figure 6. Mamdani FIS models with three membership functions 

(cluster centers). 

Table IV summarizes the inference methods selected in 

developing the Mamdani and Sugeno FIS models, 

specifically the fuzzy operator used in the antecedent, the 

type of implication employed (from the antecedent to the 

consequent), the method adopted for aggregation of the 

consequent across the rules, and the defuzzification 

method chosen to get a single crisp predicted value from 

the fuzzy output set. 

Sensitivity analysis was carried out for the best 

performing FIS models by considering different 

combinations of inference methods (fuzzy operator, 

implication, aggregation, and defuzzification). The results 

of this analysis are presented and discussed in the next 

subsection. 

2) Results of FIS models 

A total of 348 FIS models with different combinations 

of inference types (Mamdani and Sugeno), numbers of 

clusters (c), and fuzzification coefficients (m) were 

developed and trained. The predictive accuracies of the 

trained models were evaluated using the validation data 

set (125 records). Fig. 7 illustrates the MAE and R
2
 

values of the Mamdani FIS models, which each have 

different number of clusters and m values. As shown in 

Fig. 7, the performance of the FIS models with m values 

of 2.5, 3.0, 3.5, and 4.0 is exceptionally poor. A gradual 

increment in MAE and R
2
 values appears for models with 

m values of 1.5 and 2.0 as the number of clusters 

increases. Even though the R
2
 values are low, models 

with m values of 1.5 perform better in terms of MAE than 

those models with m values of 2.0 when an identical 

number of clusters is used. 

Cement

BFS

Fly ash

Water

Superplasticizer

Coarse aggregate

Fine aggregate

Mamdani Inference

Compressive 

strength
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 (a)                                                                                                                (b) 

Figure 7. (a) MAE and (b) R2 values of Mamdani FIS models. 

Among the Mamdani FIS models the best performance 

(MAE = 6.99 and R
2
 = 0.62) is achieved when the 

numbers of clusters (c) and m values are 27 and 1.5, 

respectively. The error and R
2
 values of the best ten 

Mamdani FIS models are presented in Table V. 

TABLE V. STATISTICAL RESULTS OF BEST PERFORMING MAMDANI FIS MODELS 

Rank Number of 

clusters (c) 

Fuzzification 

coefficient (m) 

Error measures R2 

MAE MSE RMSE 

1 27 1.5 6.99 81.89 9.05 0.62 

2 26 1.5 7.08 83.88 9.16 0.61 

3 28 1.5 7.29 92.37 9.61 0.58 

4 24 1.5 7.29 93.61 9.68 0.56 

5 30 1.5 7.43 95.83 9.79 0.56 

6 25 1.5 7.43 96.29 9.81 0.55 

7 20 1.5 7.64 96.19 9.81 0.54 

8 29 1.5 7.54 99.11 9.96 0.54 

9 22 1.5 7.45 101.39 10.07 0.53 

10 21 1.5 7.57 103.40 10.17 0.51 

TABLEVI. OPTIMIZATION OF FUZZY OPERATORS AND DEFUZZIFICATION METHODS FOR SUGENO FIS 

 
 

Rank 

Fuzzy operators and defuzzification methods Error measures  
 

R2 
Input 

aggregation 

Implication 

methods 

Rule 

aggregation 

Defuzzification 

method 

 

MAE 

 

MSE 

 

RMSE 

1 MIN MIN PROBOR CENTROID 6.90 79.41 8.91 0.63 

2 MIN MIN SUM CENTROID 6.90 79.43 8.91 0.63 

3 MIN MIN PROBOR BISECTOR 6.93 80.62 8.98 0.62 

4 MIN MIN PROBOR BISECTOR 6.95 80.86 8.99 0.62 

5 MIN MIN MAX CENTROID 6.99 81.88 9.05 0.62 

6 MIN MIN SUM MOM 7.66 95.24 9.76 0.62 

7 MIN MIN PROBOR MOM 7.66 95.27 9.76 0.62 

8 MIN PROD SUM CENTROID 6.84 83.22 9.12 0.61 

9 MIN PROD SUM CENTROID 6.85 83.24 9.12 0.61 

10 MIN PROD MAX CENTROID 6.91 85.66 9.25 0.60 

 

To conduct the sensitivity analysis of the best 

performing Mamdani FISs, the following options of 

fuzzy operators and defuzzification methods were tested: 

(i) for input aggregation, MIN (minimum) and PROD 

(product); (ii) for implication, MIN (minimum), and 

PROD (product); (iii) for rule aggregation, MAX 

(maximum), SUM (sum of each rule’s output set), and 

PROBOR (probabilistic OR); and (iv) for defuzzification, 

CENTROID, BISECTOR, MOM (middle of maxima), 

LOM (largest of maxima), and SOM (smallest of 

maxima). The options were varied one at a time, and a 

total of 60 unique combinations were tested. The results 

of the ten best performing fuzzy operators and 

defuzzification methods are summarized in Table VI. 

Comparing the final optimized Mamdani FIS model 

against the best performing model indicated that the 

optimization process improved the accuracy of the model 

in terms of MAE and R
2
 by only 1.29% and 1.60%, 

respectively.  
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In Sugeno FIS models, the error and R
2
 values 

obtained were the same irrespective of the number of 

clusters and m values considered in the models (i.e., the 

models were found to be insensitive to the optimization 

parameters c and m). The MAE, MSE, RMSE, and R
2
 

values of all Sugeno FIS models were 5.08, 45.62, 6.75 

and 0.78, respectively. Sensitivity analysis was carried 

out by varying the input aggregation method (MIN and 

PROD) and defuzzification methods (Wtaver, or 

weighted average and Wtsum, or weighted sum). A total 

of four combinations were tested for each Sugeno FIS, as 

shown in Table VII. The results of the sensitivity analysis 

confirm that the performance of FIS models is highly 

influenced by applying different defuzzification methods. 

According to the results, in all the Sugeno FIS concrete 

compressive strength models, the Wtaver defuzzification 

method (R
2
 = 0.78) should be adopted instead of the 

Wtsum (R
2
 = 4.5 ×10

−4
) for a better predictive accuracy. 

TABLE VII.  OPTIMIZATION OF FUZZY OPERATORS AND DEFUZZIFICATION METHODS FOR SUGENO FIS 

 

 

 

Option 

Fuzzy operators and defuzzification 

methods 

 

Error measures 

 

 

 

R2 
Input 

aggregation 

Defuzzification 

method 

 

MAE 

 

MSE 

 

RMSE 

1 MIN Wtaver 5.08 45.62 6.75 0.78 

2 PROD Wtaver 5.08 45.62 6.75 0.78 

3 MIN Wtsum 35.30 1461.24 38.23 2.83x10-7 

4 PROD Wtaver 30.92 1217.11 34.89 4.5 x10-4 

 

Comparisons between Mamdani and Sugeno FIS 

models based on the validation results show that Sugeno 

FIS models outperform Mamdani FIS models in 

predicting compressive strength. Because of the 

continuity of the output surface and linear dependence of 

each rule on the input variable [31], Sugeno FIS models 

give better performance in mapping the relationship 

between the inputs and output. Thus, Sugeno FIS models 

with m values of 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 and 

number of clusters ranging from 3 to 30 were used as an 

initial FIS for developing the ANFIS models.  

C. ANFIS for Modeling Concrete Compressive Strength 

1) ANFIS model structure and parameters 

As in the case of the ANN models, two data sets were 

employed when evaluating the ANFIS models: the 

training set (300 records) was used to construct FIS 

models using FCM clustering, while the validation set 

(125 records) was used to evaluate the predictive 

accuracy of the models. 

The ANFIS models were trained and validated using 

the same training and validation data sets used in both the 

ANN and FIS models. In this study, ANFIS models were 

generated using the ANFIS function of MATLAB Fuzzy 

Logic Toolbox
TM

. Model structures such as the number 

and type of membership function, type of output 

membership function, and inference type, and model 

parameters including learning algorithm, number of 

training epochs, and training error goal must be carefully 

selected in order to develop an ANFIS model with better 

predictive capability. The FIS models developed using 

the Sugeno inference system were used to provide the 

ANFIS models with the initial membership functions for 

training. Using Sugeno rather than Mamdani FISs in 

ANFIS has the following advantages: (i) computational 

efficiency in optimization and adaptive processes [20], (ii) 

“guaranteed continuity of the output surface” [31], and (ii) 

more reliable results when data driven techniques are 

adopted [5]. The model structure of the initial Sugeno FIS 

used for developing the ANFIS models is summarized in 

Table VIII. In this study, the effects of number of 

membership functions (number of clusters) and 

fuzzification coefficient (m) on the performance of the 

ANFIS models were investigated by varying the 

membership functions from 3 to 30 and considering 𝑚 

values of 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. The schematic 

representation of the architecture of an ANFIS model 

with 5 input membership functions based on a Sugeno 

FIS is shown in Fig. 8. 

TABLE VIII. MODEL STRUCTURE OF INITIAL SUGENO FIS USED TO 

DEVELOP THE ANFIS MODELS 

Model structures Type/value 

Number of membership functions  Varying (3–30) 

Type of input membership function Gaussian 

Type of inference  Sugeno 

Type of output membership function  Linear 

Value of fuzzification coefficient (m) Varying 

 

 

Figure 8. Schematic representation of ANFIS model with 5 input MFs. 

The basic learning rules available to optimize the 

parameters of membership functions in ANFIS are either 

back-propagation gradient descent or hybrid learning, 

which combines the gradient-descent and least-square 

methods [26]. According to Jang [23], the major 

limitation of the back-propagation gradient descent 

method is that the learning process gets trapped in the 

local minima and takes more time to train. Thus, the 

hybrid learning method was employed in this study. The 

hybrid learning procedure works in such a way that the 

consequent parameters are estimated in the forward pass 
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using the least mean square error procedure by keeping 

the premise parameters fixed; in the backward pass the 

back-propagation descent method is used to modify the 

premise parameters while the consequent parameters are 

kept fixed [16], [23]. This procedure is repeated until 

both the premise and consequent parameters are 

optimized. In this case, the number of training epochs and 

the training error goal were set to 1000 and 0, 

respectively. The training process terminates whenever 

either of these designated values are achieved.  

 2)
 

Results of FIS models 

After successful training, the validation data set was 

applied to evaluate the predictive capability of the models. 

The MAE and R
2
 values of ANFIS models with different 

m values and numbers of clusters (c) ranging from 2 to 17 

are presented in Fig. 9 for illustration purposes, as the 

performance of the models with higher number of 

clusters were found to be very poor (R
2
 values ranging 

between 8.58 ×
 

10
−6

 and 0.41). Comparatively, the 

ANFIS models with m values of 1.5, 2.0 and 2.5 perform 

better in predicting compressive strength than those 

ANFIS models with higher m values. Moreover, higher 

prediction accuracy is achieved at a lower number of 

clusters (2 to 7) for all m values considered in the 

models—unlike the Mamdani FIS models, which 

achieved higher accuracy at a higher number of clusters. 

 
(a) 

 

(b) 

Figure 9. (a) MAE and (b) R2 values of ANFIS models. 

The performance results of the top ten ranked ANFIS 

models in terms of prediction accuracy are presented in 

Table IX. According to Table IX, the highest prediction 

accuracy is achieved from an ANFIS model with 5 

clusters and m values of 2.0. The MAE, MSE, RMSE, 

and R
2
 vales of this model are 4.19, 29.40, 5.42, and 0.86, 

respectively.  

TABLE IX. STATISTICAL RESULTS OF BEST PERFORMING ANFIS 

MODELS 

Rank 

Number 
of 

clusters 

(c) 

Fuzzification 

coefficient 
(m) 

Error measures 

R2 
MAE MSE RMSE 

1 5 2.0 4.19 29.40 5.42 0.86 

2 5 1.5 4.30 29.99 5.48 0.86 

3 7 2.5 4.33 30.36 5.51 0.86 

4 3 2.5 4.36 31.25 5.59 0.85 

5 6 1.5 4.36 31.52 5.61 0.85 

6 7 1.5 4.43 31.66 5.63 0.85 

7 4 2.5 4.23 32.59 5.71 0.85 

8 4 2.0 4.26 32.90 5.74 0.85 

9 3 1.5 4.34 33.73 5.81 0.84 

10 4 1.5 4.50 34.65 5.89 0.84 

 

 

Figure 10. Comparison of actual and predicted compressive strength of 
the best performing AI models. 

D. Comparison of AI Models 

To compare the performance of the three AI modeling 

techniques, a scatter diagram plotting the relationship 

between actual and predicted compressive strengths was 

developed for the best performing ANN, Mamdani FIS, 

Sugeno FIS, and ANFIS models, each of whose model 

structure and parameters are described in previous 

sections. The linear least square fit line (trend line) with 

its corresponding linear equation and R
2
 values is 

depicted in Fig. 10 for each best performing AI model. 

The prediction accuracy of the Mamdani FIS was 

relatively low (R
2
 = 0.629), and better prediction was 

achieved with a higher number of clusters (c = 27), 

resulting in limited interpretability. According to Pedrycz 

and Gomide [17], the number of clusters should be 

moderately low (5–9) for better interpretability. The 

prediction accuracy of the Sugeno FIS remained the same 

(R
2
 = 0.782) regardless of the number of clusters and m 

values considered (i.e., it was not sensitive to parameter 

optimization). The compressive strength values predicted 

by the ANFIS (R
2
 = 0.859) and ANN (R

2
 = 0.855) 

models were reasonably close to the actual compressive 
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strength values as compared to the FIS models. In other 

words, ANFIS and ANN models were found to be better 

than the FIS models in mapping the relationship between 

the input variables and the output. Even though the 

predictive capability of the ANN is high, the model lacks 

interpretability, as the logic behind the model cannot be 

traced. Thus, the best performing ANFIS model should 

be used for predicting the compressive strength of HPC, 

as its learning capability contributes by optimizing the 

membership functions, and the relationship between the 

input and output can be easily interpreted in the form of 

if-then rules. The ranking and model performance values 

of the best performing AI models are shown in Table X. 

TABLE X. STATISTICAL RESULTS OF BEST PERFORMING ANFIS 

MODELS 

Rank AI model type 
Error measures 

R2 
MAE MSE RMSE 

1 ANFIS 4.19 29.40 5.42 0.86 

2 ANN 4.03 30.41 5.51 0.86 

3 Sugeno FIS 5.08 45.62 6.75 0.78 

4 Mamdani FIS 6.90 79.41 8.91 0.63 

IV. CONCLUSION AND FUTURE WORK 

High-Performance Concrete (HPC) is a very complex 

material, as the inter-relationship between the constituent 

materials is highly nonlinear and the material’s property 

is affected by several interacting factors that are not yet 

fully understood. Thus, the already available 

conventional empirical and statistical methods are limited 

in accurately predicting the compressive strength of HPC. 

In this study, the potential of AI techniques including 

ANN, FIS, and ANFIS in predicting the compressive 

strength of HPC were explored. The AI-based predictive 

models were trained and verified using a HPC 28-day 

compressive strength data set obtained from the literature. 

In order to optimize the AI models, different model 

structures and parameters were examined. ANN models 

with a multilayer feedforward back-propagation with a 

single hidden layer were developed by varying the 

number of neurons in the hidden layer (from 2 to 25) and 

by changing the transfer functions (PURELIN, LOGSIG, 

and TANSING) in the hidden and output layers. A data-

driven approach based on fuzzy c-means clustering (FCM) 

was employed to generate both the Mamdani and Sugeno 

FIS models. The FIS models developed using Sugeno FIS 

were used as an initial FIS to train the ANFIS models. 

The effects of model parameters including number of 

clusters (varying from 2 to 30) and fuzzification 

coefficient (m = 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0) on the 

performance of the FIS and ANFIS models were 

investigated. After successful training of the AI models, 

the validation data set was applied to evaluate the 

predictive capability of the models based on error 

measures such as MAE, MSE, RMSE, and R
2
. Finally, 

for each AI technique, a model with minimum error 

values and maximum R
2
 was selected as the optimal 

predictive model of that type. 

The conclusions drawn in this study are based on the 

input factors, model structure and parameters considered, 

and the training and validation data set used in 

developing and verifying the models. Comparatively, m 

values of 1.5 and 2.0 resulted in better predictive 

accuracy in Mamdani FIS models. The best performing 

Mamdani FIS model (MAE = 6.99 and R
2
 = 0.63) 

resulted when the number of clusters used was reasonably 

high (c = 27); by contrast, Sugeno FIS models were 

insensitive to parameter optimization (m and c) and the 

MAE and R
2
 values of all Sugeno FIS models were 5.08 

and 0.78, respectively. The best performing ANN model 

was achieved when 23 neurons were used in the hidden 

layer and LOGSIG and PURELIN transfer functions were 

employed in the hidden and output layers, respectively. It 

was found that the performance of ANN models is 

exceptionally poor when the LOGSIG transfer function is 

used in the output layer, irrespective of the number of 

neurons and transfer function used in the hidden layer. 

ANFIS models with low numbers of clusters (2–7) have 

outperformed those models with high numbers of clusters 

in predicting compressive strength. The best predictive 

ANFIS model was attained when the number of clusters 

(c) and fuzzification coefficient (m) were 5 and 2.0, 

respectively. Overall, comparisons among the AI models 

showed that ANFIS and ANN perform better than the FIS 

models in generalizing the relationship between the input 

variables (constituent materials) and the output 

(compressive strength). Though the performances of 

ANFIS and ANN models were found to be almost the 

same, the ANFIS model should be preferred over the 

ANN model for interpretability reasons, as ANN is a 

“black box” that makes it difficult to explicitly identify 

possible causal relationships. Moreover, the ANFIS 

model saves more computational time and eliminates the 

trial and error procedure required to select the best ANN 

architecture. 

The contributions of this paper can be grouped into 

three areas. Firstly, the paper presented AI-based HPC 

compressive strength prediction models. The models 

accurately represent the complex nonlinear relationship 

between the constituent materials and compressive 

strength of HPC, and provide researchers and 

practitioners with an alternative prediction approach. 

Secondly, the paper presented an approach for developing 

FIS models using a data-driven approach, which 

overcomes the limitations of expert-driven FIS models 

applied in past concrete compressive strength studies. 

Lastly, the paper advanced the state of the art in AI 

modeling for concrete compressive strength prediction by 

optimizing the structural and parameter components of 

the three commonly used AI models (ANN, FIS, and 

ANFIS). The study showed that the structures and 

parameters for AI models should be carefully examined 

for better performance of the concrete compressive 

strength predictive models. The results of this study also 

show that a data-driven approach based on FCM 

clustering can be used to generate reliable FIS and 

ANFIS models to predict the compressive strength of 

HPC. The developed models will help industry 
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practitioners (i.e., designers and construction engineers) 

to accurately predict the compressive strength of HPC 

without having to conduct costly and time-consuming 

laboratory experiments. 

Further research will consist of: (i) investigating the 

effects of different network types (perceptron, 

probabilistic) and training algorithms (such as Quasi-

Newton, resilient back propagation, etc.) on ANN models; 

(ii) examining the implications of using different types of 

fuzzy operators and defuzzification methods, membership 

functions (triangular, trapezoidal, etc.), and clustering 

methods (k-means clustering, subtractive clustering, and 

conditional clustering) on the performance of both FIS 

and ANFIS models in predicting concrete compressive 

strength; and (iii) studying the effect of using the back-

propagation learning rule to train the ANFIS models and 

comparing the results to those of ANFIS models 

employing the hybrid learning rule. 
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