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Abstract—In this paper, a systematic tuning procedure for a 

fractional order PD controller for seismic mitigation is 

proposed. The tuning is based upon reducing the magnitude 

of the compensated system at the resonance frequency as 

compared to the magnitude of the uncompensated structure. 

For simplicity, a laboratory scale 1DOF (one degree of 

freedom) steel structure is used as the case study, The 

simulation results considering the El Centro earthquake 

accelerograms show that the designed control strategy is 

highly suitable for solving seismic mitigation of steel 

structures and ensures improved response in comparison 

with steel structures equipped with passive protection.    

 

Index Terms—seismic mitigation, fractional order controller, 

robustness 

 

I. INTRODUCTION 

Structural control methods attempt to mitigate the 

structural response induced by various environmental 

dynamic loadings, such as powerful wind gusts and 

earthquakes, and to enhance the safety and quality of 

structures [1], [2]. Passive structural control techniques 

have been used intensively, especially in the form of 

Tuned Mass Dampers (TMD) [2], which add damping to 

the structure, in the event of an environmental dynamic 

loading. The major disadvantage of TMDs, which are 

tuned only to the fundamental frequency of the structure 

[1], is that they have a limited control capacity, 

suppressing only a reduced number of vibrations. 

Therefore, these passive devices may have little effect 

during earthquakes which stimulate other modes instead 

of the one that is used to tune the particular TMD [3]. 

Active control strategies, on the other hand, have the 

advantage that they require an external energy source that 

is used to suppress any type of vibrations that may occur 

through the use of an actuator. Active Tuned Mass 

Dampers (ATMD) are in fact TMDs equipped with an 

actuator that is used to apply the control force in real time. 

Different control algorithms have been proposed over the 

years in order to yield the control force for the actuator, 

such as optimal, robust, sliding mode control, fuzzy logic 

control [2], [4]-[6], mainly used due to the increased 
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robustness they confer to the closed loop system. 

Different types of proportional-integrative-derivative 

(PID) controllers have also been employed, due to their 

simplicity, but tuned to be optimal and robust against 

uncertainties and modelling errors [1], [7], [8].  

An emerging control strategy that has been little 

considered for seismic mitigation is the fractional order 

control that is based on combining traditional PID control 

strategies with the theory of fractional calculus [9]. In 

fact, fractional order PID controllers are generalizations 

of the traditional PID controllers, since they involve 

integrators of order μϵ(0,1) and differentiators of order 

λϵ(0,1). Among the fractional order control strategies that 

have been proposed for solving the vibration suppression 

problems, is the fractional order disturbance observer 

[10], an enhanced version of the linear quadratic regulator 

with fractional order filters [11] or the fractional order 

difference feedback [12]. The choice for such a control 

algorithm resides in its ability to enhance the closed loop 

performance, stability and robustness despite 

uncertainties and modelling errors, while being 

significantly easier to tune and implement as compared to 

the more complex advanced control algorithms [13], [14]. 

The present paper presents a fractional order controller 

designed to suppress the vibrations that may occur in a 

structure. For simplicity, a laboratory scale 1DOF (one 

degree of freedom) steel structure is used as the case 

study, but the results may be easily extended to a high-

rise building and to multiple DOF systems. The structure 

is equipped with an ATMD, but for comparison purposes 

a TMD device is also used. Previous research include the 

tuning of a simple fractional order control algorithm for a 

similar case study, in which the steel structure has been 

equipped with viscoelastic mass dampers [15], as well as 

a trial and error design of a fractional order PD controller, 

where the fractional order and the derivative gains are 

pre-selected and the influence of the proportional gain 

upon vibration attenuation is solely analysed [16]. In this 

paper, a systematic tuning procedure for a fractional order 

PD controller for seismic mitigation is proposed. The 

tuning is based upon reducing the magnitude of the 

compensated system at the resonance frequency as 

compared to the magnitude of the uncompensated 

structure. The simulation results considering the El 
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Centro earthquake accelerograms show that the designed 

control strategy is highly suitable for solving seismic 

mitigation of steel structures and ensures improved 

response in comparison with steel structures equipped 

with passive protection. 

 

Figure 1.  Schematic representation of the ATMD. 

II. THE LABORATORY SCALE 1 DOF STRUCTURE 

WITH ACTIVE AND PASSIVE TMD 

The schematic representation of the ATMD and the 

structure is given in Fig. 1, where m, k and c are the mass, 

stiffness and damping coefficients of the structure, while 

ma, ka and ca are the mass, stiffness and damping 

coefficients of the ATMD, u is the control force acting 

upon the actuator. The system is modeled in a simplified 

manner as: 

with gg xm)t(F   and gx the seismic excitation. If, 

u(t)=0, then (1) describes the equations for a structure 

equipped with a simple TMD. The structural parameters 

are: m=120 N*s
2
/m, k=3147 N/m and c=3.886 N*s/m. To 

tune the TMD, the mass ratio is chosen as %2
m

ma  , 

yielding a mass of the TMD, ma=2.4 N*s
2
/m. Next, the 

natural frequency of the structure and its damping ratio 

are computed: 2.16n  , 01.0 . The generalised Den 

Hartog equation [17] is used to determine the damping 

ratio of the TMD: 
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The frequency ratio of the TMD and the structure is 

then computed using the same generalised Den Hartog 

equation [17]: 
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The natural frequency of the TMD is determined using 

(3), while the damping and stiffness coefficients are 

computed based on (2) and (4): 

15.56  q na    (4) 
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III. DESIGN OF THE FRACTIONAL ORDER PD 

CONTROLLER FOR VIBRATION SUPPRESSION 

The transfer function of the proposed fractional order 

PD controller is given as: 

  sk)s(C pFO 1   (6) 

where kp is the proportional gain, kd is the derivative gain, 

λ is the fractional order of differentiation, with λϵ(0,1) 

and s is the Laplace variable. The closed loop system 

with the fractional order PD controller is given in Fig. 2. 

The controller receives the measured structural 

displacement and, according to the proposed algorithm, 

generates the control force for the actuator which is then 

applied to the structure. The controller will treat the 

seismic excitation,
g

x , as a disturbance and will attempt 

to maintain the structural displacement, x, at its reference 

position, 0.  

 

Figure 2.  Schematic diagram of the fractional order PD controller 
applied on the laboratory scale structure with ATMD 

Fig. 3 shows the Bode diagram of the reference 

structure (uncompensated structure), as well as the Bode 

diagram of the passively controlled structure using the 

TMD and the actively controlled structure using the 

ATMD. To tune the fractional order PD controller the 

following conditions are imposed for the closed-loop 

system: 

481  )j(Hcl dB, 101 . rad/sec          (7) 

462  )j(Hcl dB, 2162 .r  rad/sec        (8) 

803  )j(Hcl dB, 1003  rad/sec          (9) 

where Hcl(s) is the closed loop transfer function: 
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with P(s) the transfer function of the steel structure with 

the ATMD, as determined from (1), and the fractional 

controller in the frequency domain is described by: 
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obtained by replacing s=jω in (6). Solving the system of 

equations (7)-(9), the three controller parameters may be 

obtained using the MATLAB optimization toolbox and 

the fmincon() function, where (8) is used as the main 

function to be minimized and (7) and (9) are used as 

constraints. The solution is determined to be: kp=49.8, 

kd=0.95 and λ=0.805. The implementation of the 

controller in (6) will be carried out in Matlab, by using an 

approximation of the fractional derivative
s , computed 

using the Oustaloup Recursive Approximation algorithm 

[18]. An analysis of the Bode diagram in Fig. 3 shows 

that the designed fractional order PD controller ensures 
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the closed loop specifications in (7)-(9) and manages to 

reduce the magnitude peak at the resonant frequency in 

comparison to the uncompensated or passively controlled 

case. 
Bode Diagram
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Figure 3.  Bode diagram of the structure, passively and actively 
controlled structure  
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Figure 4.  Comparison of time histories of structural displacement 

subjected to El Centro earthquake in unprotected, passive and active 
control 

IV. SIMULATION RESULTS AND ROBUSTNESS 

EVALUATION 

Fig. 4 presents the comparative simulation results, with 

the El-Centro earthquake excitation input, for the 

reference structure without any seismic protection and the 

passive and active control situations. The simulation 

results show that the designed fractional order PD 

controller can actively reject earthquake excitations and 

suppress the vibrations induced by such phenomena. 

When compared to the passive protection ensured by the 

TMD, the attenuation level is significantly increased. To 

test the robustness of the designed controller, modelling 

errors are considered in estimating the structural 

parameters. Thus, the parameters of the structure are 

modified, such that the resonance frequency is shifted: 

413.n  . Fig. 5 shows the El Centro response, for the 

reference structure with the new natural frequency, the 

structure equipped with the previously designed TMD 

and the structure with the ATMD actuated by the 

fractional order PD controller. The simulation results 

show that the proposed controller is indeed robust, being 

able to attenuate the vibrations within a short time 

interval. The TMD can still attenuate the vibrations 

produced by the El Centro earthquake, but the attenuation 

level and settling time of the oscillations are increased.  
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Figure 5.  Robustness tests considering modeling errors for the 
structure subjected to El Centro earthquake in unprotected, passive and 

active control 

V. CONCLUSIONS 

The purpose of the paper was to design an active 

control strategy for seismic mitigation based on ATMDs 

and the emerging theory of fractional calculus. To 

simplify the modelling task, a simple laboratory scale 

model of a structure was considered, however, the results 

can easily be extended to a multiple DOF system. For this 

model scale structure, a TMD was designed using 

generalized Den Hartog equations. Next, a fractional 

order PD controller was tuned in order to actively reject 

structural excitation inputs. The simulation results show 

that the designed controller achieves better performance 

in terms of vibration attenuation, when compared to the 

passive TMD. Since a simplified description of any 

structure may lead to an incorrect estimation of the 

fundamental frequency of vibration of a structure, 

robustness tests were also considered. The results 

obtained clearly show that the ATMD with the fractional 

order PD controller outperforms the passive TMD and 

ensures vibration attenuation even in the case of 

modelling errors. 

ACKNOWLEDGMENT 

This work was supported by the grant no. 

29431/09.12.2014 of the Technical University of Cluj-

Napoca, Romania. 

REFERENCES 

[1] S. Etedali, M. R. Sohrabi, and S. Tavakoli, “An independent 
robust modal PID control approach for seismic control of 

buildings,” Journal of Civil Engineering and Urbanism, vol. 3, pp. 
279-291, 2013. 

[2] A. Pourzeynali, H. H. Lavasani, and A. H. Modarayi, “Active 

control of high rise building structures using fuzzy logic and 
genetic algorithms,” Engineering Structures, vol. 29, pp. 346-357, 

2007. 
[3] H. R. Owjia, A. H. N. Shirazib, and H. H. Sarvestani, “A 

comparison between a new semi-active tuned mass damper and an 

active tuned mass damper,” Procedia Engineering, vol. 14, pp. 
2779-2787, 2011. 

International Journal of Structural and Civil Engineering Research Vol. 5, No. 2, May 2016

© 2016 Int. J. Struct. Civ. Eng. Res. 95



 

 

 

 

 
 

 

  

 

  

 

 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

International Journal of Structural and Civil Engineering Research Vol. 5, No. 2, May 2016

© 2016 Int. J. Struct. Civ. Eng. Res. 96

[4] L. Huo, G. Song, H. Li, and K. Grigoriadis, “H∞ robust control 
design of active structural vibration suppression using an active 

mass damper,” Smart Materials and Structures, vol. 17, 2008. 

[5] K. S. Park and W. U. Park, “Min-max optimum design of active 
control system for earthquake excited structures,” Advances in 

Engineering Software, vol. 51, pp. 40-48, 2012. 
[6] R. Guclu and H. Yazici, “Seismic-vibration mitigation of a 

nonlinear structural system with an ATMD through a fuzzy PID 

controller,” Nonlinear Dynamics, vol. 58, pp. 553-564, 2009. 
[7] N. Aguirre, F. Ikhouane, and J. Rodellar, “Proportional-plus-

integral semi active control using magneto-rheological dampers,” 
Journal of Sound and Vibration, vol. 330, pp. 2185-2200, 2011. 

[8] S. Etedali, M. R. Sohrabi, and S. Tavakoli, “Optimal PD/PID 

control of smart base isolated buildings equipped with 
piezoelectric friction dampers,” Earthquake Engineering and 

Engineering Vibration, vol. 12, pp. 39-54, 2013. 
[9] M. P. Aghababa, “A fractional-order controller for vibration 

suppression of uncertain structures,” ISA Transactions, vol. 52, pp. 

881-887, 2013. 
[10] Y. Q. Chen, B. M. Vinagre, and I. Podlubny, “Fractional order 

disturbance observer for robust vibration suppression,” Nonlinear 
Dynam., vol. 38, p. 355, 2004. 

[11] A. Shafieezadeh, K. Ryan, and Y. Q. Chen, “Fractional order filter 

enhanced LQR for seismic protection of civil structures,” Journal 
of Computational and Nonlinear Dynamics, vol. 3, 2008. 

[12] Z. H. Wang and Y. G. Zheng, “The optimal form of the fractional-
order difference feedbacks in enhancing the stability of a sdof 

vibration system,” J. Sound Vib., vol. 326, no. 3, p. 476, 2009. 

[13] A. Cichocki and R. Unbehaven, Neural Networks for Optimization 
and Signal Processing, 1st ed., Chichester, U.K.: Wiley, 1993, ch. 

2, pp. 45-47. 

[14] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, 
Fractional Order Systems and Controls: Fundamentals and 

Applications, London, UK: Springer-Verlag, 2010. 
[15] C. I. Muresan, E. H. Dulf, and O. Prodan, “A fractional order 

controller for seismic mitigation of structures equipped with 

viscoelastic mass dampers,” Journal of Vibration and Control, 
2015. 

[16] O. Prodan and C. I. Muresan, “Seismic mitigation via fractional 
order active control,” in Proc. Eurosteel 2014 – 7th European 

Conference on Steel and Composite Structures, Naples, Italy, 

September 10-12, 2014. 
[17] I. M. Abubakar and B. J. M. Farid, “Generalized den hartog tuned 

mass damper system for control of vibrations in structures,” in 
Seismic Control Systems: Design and Performance Assessment, S. 

Syngellakis, Ed., London, UL: WIT Press, 2013. 

[18] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, 
“Frequency band complex non integer differentiator: 

Characterization and synthesis,” IEEE Transactions on Circuits 
and Systems I: Fundamental Theory and Applications, vol. 47, pp. 

25-40, 2000. 

 
Ovidiu Prodan is Assistant Professor with the Department of Structural 

Mechanics, Faculty of Civil Engineering, Technical University of Cluj-
Napoca conducting tutorials in the following subjects: Mechanics, 

Structural Dynamics, Numerical Analysis. 

 




