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Abstract—This paper deals with the nonlinear bending 

analysis of rectangular plates resting on Winkler type 

foundation using Element Free Galerkin (EFG) method 

with Moving Kriging (MK) shape function. The nonlinear 

equations of equilibrium, based on first order shear 

deformation theory and von Kármán's strain-displacement 

relationship are solved using Newton-Raphson method. 

Limited parametric study is conducted to examine the 

effectiveness of the present method in solving elastically 

supported plates with different loading and boundary 

conditions. 

 

Index Terms—plate on winkler foundation, element free 

galerkin method, moving kriging shape function  

 

I. INTRODUCTION 

Most of the civil engineering structures are built on 

foundation slabs (called raft slab), which rests directly on 

the elastic soil. Hence, plates / slabs on continuous elastic 

foundation have received considerable attention of the 

researchers in the last few decades. Winkler model is the 

simplest soil-structure interaction model in which the 

deflection is assumed to be dependent only on the contact 

pressure. Both analytical and numerical approaches were 

used in the past to investigate plates resting on elastic 

foundation. Voyiadjis and Kattan [1] presented analytical 

solutions for thick rectangular plates on Winkler 

foundation using Navier and Levy type methods. 

Kobayashi and Sonoda [2] provided the Levy type 

solutions for plates with two sides simply supported and 

resting on Winkler foundation. Svec [3] investigated the 

same problem using finite element method with the 

triangular mesh. Liew et al. [4] presented numerical 

solutions for a similar problem using differential 

quadrature method. Ng and Chan [5] carried out 

geometrically nonlinear analysis of clamped plates of 

different shapes resting on Winkler foundation using 

collocation least square technique. Existing literature on 

plate resting on elastic foundation contains various 

solutions for linear and nonlinear problems which are not 

included here for brevity. 

Meshless methods, due to their ease of adaptivity have 

an edge over mesh based techniques in handling large 

                                                           
Manuscript received June 10, 2015; revised September 20, 2015. 

deformation problems. One of the most popular meshfree 

methods, called Element Free Galerkin (EFG) method 

[6]-[8] based on Moving Least Squares (MLS) shape 

function, received much attention in solving linear and 

nonlinear problems with complicated loading and 

boundary conditions. Since MLS shape functions do not 

satisfy Kronecker delta property, effective imposition of 

boundary conditions remained a topic of interest for years 

[9]. To eliminate this problem, Gu [10] used along with 

EFG, a new shape function based on geostatistical 

technique called Moving Kriging (MK) method. Various 

applications of EFG based on Moving Kriging (MK) can 

be found in Ref [11]-[13].  

In the present work, element free Galerkin method 

with MK based shape functions is employed for linear 

and nonlinear bending analysis of isotropic thin and 

moderately thick rectangular plates resting on Winkler 

foundation subjected to patch and line loads. Meshfree 

formulation based on First order Shear Deformation 

Theory (FSDT) and von Kármán's strain-displacement 

relationship is solved using Newton-Raphson method. 

The effect of different loading, boundary conditions and 

subgrade modulus (K) on the nonlinear bending 

behaviour is studied. Results obtained are compared and 

are found to be in good agreement with the available 

analytical and numerical solutions the literature. 

II. MOVING KRIGING BASED SHAPE FUNCTION 

The approximation of a field variable using MK based 

interpolating shape function is given by [10]: 
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basis . A, B and rare given by : 
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A is an m × n matrix, B is an n × n matrix while I is an 

n × n  unit matrix, where m denotes the number of terms 

in the polynomial basis and n denotes the number of 

nodes whose influence domain contains the point of 
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interest, x.  Size of influence domain, dm  is given by αdc 

where dc is the average nodal spacing and α is the non-

dimensional scaling factor. In the present study, shape of 

influence domain for all the nodes are taken as 

rectangular while value of α is taken as 3.0.  
r is a 1 × n vector of correlation between the given 

nodes (s) and point of interest x. cor(xi, xj) is a correlation 

function. In the present formulation, Gaussian correlation 

function is used which is given by : 

2
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where, jiij
ij

ij xxh
d

h
r  , . d is the maximum distance 

up to which the correlation between the nodes exist. In 

the present formulation, coordinates are normalized so 

that the values of xi and yi lie between 0 and 1 while d is 

taken as unity. P and R in (2) are given by: 



















)(...)(

.........

)(...)(

1

211

nmn

m

spsp

spsp

P  



















),(...),(

.........

)(...),(

1

,111

nnn

n

sscorsscor

sscorsscor

R                             (5) 

III. GEOMETRICAL NONLINEAR ANALYSIS 

First order shear deformation theory with five degrees 

of freedom ( , , , ,x yu v w   ) per node is employed here to 

model the isotropic plate resting on elastic foundation. 

The nonlinear algebraic equations of equilibrium for the 

plate and the linearized version of the same may be 

written as:  

 wNLL KFKK  )]([                  (6) 

FKT  FKT                    (7) 

where LK  and NLK are linear and nonlinear stiffness 

matrices respectively; TK is the tangent stiffness matrix; 

wK is consistent foundation stiffness matrix; F is the load 

vector and K is the geometric stiffness matrix. The 

stiffness matrices may be expressed as: 
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Here, kw is the elastic subgrade modulus. The 

dimensionless elastic subgrade modulus, K used in the 

present study is given by: 

a) K = (kwa
4
/D)

1/4
 for all linear problems; 

b) K = kwa
4
/D for all nonlinear problems 

Equation (6) is solved by Newton-Raphson method to 

trace the nonlinear bending behavior of elastically 

supported rectangular plates. 

IV. NUMERICAL RESULTS 

The efficiency of element free Galerkin's method with 

moving kriging shape function for the nonlinear bending 

analysis of elastically supported plates is studied here. 

Rectangular isotropic plates with length "a", width "b" 

and thickness "h" is assumed to be supported on the 

Winkler foundation at the bottom. The edges of the plate 

may be free (FFFF) or simply supported (SSSS) or 

clamped (CCCC) and the corresponding boundary 

conditions may be expressed as 

SSSS:    0 ywv  at  x = 0, a 

while    0 xwu  at y = 0, b 

CCCC: 0 yxwvu  at all edges. 

FFFF: No boundary condition at the edges 

At the beginning, accuracy of the present method and 

the in-house computer code for bending analysis of 

isotropic rectangular plates resting on the Winkler 

foundation is examined by studying the following two 

example problems for which results are available in the 

literature: 

TABLE I. CONVERGENCE OF MAXIMUM DEFLECTION FROM THE 

LINEAR BENDING ANALYSIS OF SQUARE PLATE RESTING ON WINKLER 

FOUNDATION SUBJECTED TO PATCH LOAD WITH SSSS BOUNDARY 

CONDITION. 

a/b = 1, a/h = 100, K = 3, ν = 0.3, θ = 20, 
4

0ma x

3
aqD/w10w   

Nodes w  [14]  w - Present Error(in %) 

Patch Load - u/a = v/b = 0.5 

10 x 10 

1.775 

1.727 2.672 

12 x 12 1.762 0.713 

14 x 14 1.769 0.323 

16 x 16 1.769 0.325 

18 x 18 1.773 0.111 

 

Example 1: Isotropic square plate resting on Winkler 

foundation with simply supported or clamped edges. 
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Convergence of maximum deflection of simply 

supported (SSSS) isotropic square plates resting on 

Winkler foundation and carrying a square patch load (Fig. 

1) or line load (Fig. 2) is presented in Table I and Table II 

respectively. It is observed that 18 × 18 nodes are 

sufficient to obtain converged results for both patch load 

and line load and the maximum deflection match well 

with the results of Ref [14] obtained using improved 

differential quadrature method. 

TABLE II. CONVERGENCE OF MAXIMUM DEFLECTION FROM THE 

LINEAR BENDING ANALYSIS OF SQUARE PLATE RESTING ON WINKLER 

FOUNDATION SUBJECTED TO LINE LOAD WITH SSSS BOUNDARY 

CONDITION. 

a/b = 1, a/h = 100, K = 3, ν = 0.3, θ = 20, 
3

0ma x

3
aQD/w10w   

Nodes w [14]  w - Present Error(in %) 

Line Load - xL = 0.5a, v/b = 0.5 

10 x 10 

4.128 

3.990 3.361 

12 x 12 4.086 1.035 

14 x 14 4.106 0.553 

16 x 16 4.109 0.464 

18 x 18 4.121 0.169 

 

  b 

q 

y 

x 

u 

v 

a 

 

Figure 1. Isotropic rectangular plate subjected to patch load 
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  b 

Q 

v 

xL 
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Figure 2. Isotropic rectangular plate subjected to line load 

Further, the central displacement of the plate subjected 

to both patch load and line load are found to match well 

with the results of Ref [14] in Table III and Table IV 

respectively for different boundary conditions and 

dimensionless subgrade modulus (K). 

TABLE III. COMPARISON OF MAXIMUM DEFLECTION OF SQUARE 

PLATES RESTING ON WINKLER FOUNDATION SUBJECTED TO PATCH 

LOAD (U/A = 0.5, V/B = 0.5) WITH DIFFERENT BOUNDARY CONDITIONS 

AT THE EDGES. 

a/b = 1, ν = 0.3, θ = 20, Nodes = 18 × 18, 
4

0ma x

3
aqD/w10w   

a/h  w [14] w  - Present Error(in %) 

SSSS - K = 3 

5 2.1300 2.1348 0.2255 

100 1.7746 1.7726 0.1112 

SSSS - K = 5 

5 0.9460 0.9458 0.0139 

100 0.8477 0.8464 0.1487 

CCCC - K = 3 

5 1.2652 1.2683 0.2417 

100 0.8003 0.7936 0.8468 

TABLE IV. COMPARISON OF MAXIMUM DEFLECTION OF SQUARE 

PLATES RESTING ON WINKLER FOUNDATION SUBJECTED TO LINE LOAD 

(Xl= 0.5a, V/B = 0.5) WITH DIFFERENT BOUNDARY CONDITIONS AT THE 

EDGES. 

 a/b = 1, ν = 0.3, θ = 20, Nodes = 18 × 18, 
3

0ma x

3
aQD/w10w   

a/h w  [14] w  - Present Error(in %) 

SSSS: K = 3 

5 5.3705 5.3736 0.0580 

100 4.1285 4.1214 0.1710 

SSSS: K = 5 

5 2.7056 2.6967 0.3285 

100 2.0624 2.0570 0.2576 

CCCC: K = 3 

5 3.5153 3.5148 0.0140 

100 2.0333 2.0174 0.7792 

 

Example 2: Isotropic square plate resting only on 

Winkler foundation (edges are free) 

In order to confirm the validity of the present 

formulation, a comparison of results is made for a 

rectangular plate with free edges, resting on Winkler 

foundation and subjected to loading conditions as shown 

in Fig. 3. Due to symmetric boundary conditions, only 

lower quarter of plate is considered. It can be observed 

from Table V and Fig. 4 that results obtained using the 

present formulation are in very good agreement with 

those provided by Choi and Kim [15]. Further, 18 × 18 

nodes are sufficient to obtain converged results for 

multiple path loads. 
 

P 

y 

x 
3ft 

7.5ft 15ft 3ft 

15ft 

7.5ft 

150Kips 
200Kips 

300Kips 
200Kips P' 

 

Figure 3. Rectangular plate subjected to patch load [15] 
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Figure 4. Comparison of linear static deflection for plate on Winkler 
foundation subjected to patch loads [15] 

TABLE V.  CONVERGENCE STUDY FOR LINEAR STATIC DEFLECTION OF 

PLATE RESTING ON WINKLER FOUNDATION SUBJECTED TO PATCH 

LOADS [15]  

a = b = 51ft, h = 2ft                                                                                    

E = 3122ksi (Concrete), ν = 0.15, kw = 28.4k/ft3 (4467kN/m3) 

Nodes wmax(ft) [15]  wmax(Present) Error(in %) 

6 x 6 

0.05945 

0.05852 1.563 

8 x 8 0.05913 0.532 

10 x 10 0.05925 0.328 

12 x 12 0.05928 0.278 

14 x 14 0.05931 0.237 

 

It is observed that the present method is quite efficient 

for the bending analysis of plates with different loading 

and boundary conditions. Now, additional problems of 

square isotropic plates supported only on Winkler 

foundation (FFFF: edges are free) are taken up for 

investigation.   

 

p 

p 

q q 

q 

q 

q 

q 

p 

p 

4q 4q 

6p 

a 

b 

y 

x 

t = 0.02a 

 

Figure 5. Geometry and loading conditions (Case - I) for square plate 
resting on Winkler foundation with free edges  

Problem 1: Square plate resting on elastic foundation 

at the bottom and supporting multiple patch loads from 

walls. 

A square plate (a/h = 50) with free edges resting on 

Winkler foundation at the bottom and subjected to 

multiple patch loads, as shown in Fig. 5 is considered to 

simulate the behavior of foundation subjected to load 

transferred by walls in a structure. It should be noted here 

that all the patch loads considered are of equal thickness 

(t = 0.02a). All patch loads are assumed to be uniformly 

distributed over the patch area and are of equal magnitude 

(q0). Nodal distribution and background mesh used in the 

present case is shown in Fig. 6. Non-dimensional 

deflections ( 4

0
aqD/ww  , ν =0.3) for different subgrade 

modulus of soil (K) and first loading case (Case - I) are 

presented in the form of contour diagrams shown in Fig. 

7(a) - Fig 7(c). Maximum non-dimensional deflection for 

low subgrade modulus (K= 4) is 2.9343e-04, which 

reduces to 2.2839e-05 for moderate subgrade modulus 

(K= 8)  and further go down to 1.9948e-06 for very high 

value of soil modulus (K= 16) . 

 

Figure 6. Nodal distribution and background mesh for square plate 

resting on Winkler foundation with free edges (Case - I) 

 

Figure 7. (a) Non-dimensional deflection - Case - I (K = 4, ν =0.3) 

( maxw  = 2.9343e-4) 

  

Figure 7. (b) Non-dimensional deflection - Case - I  (K = 8, ν =0.3) 

( maxw  = 2.2839e-5) 
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Figure  7.  (c) Non-dimensional deflection -Case - I (K = 16, ν =0.3) 

( maxw  = 1.9948e-06 ) 
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0.02a x 0.02a 

 
Figure 8. Geometry and loading conditions (Case - II) for square plate 

resting on Winkler foundation with free edges (r = s) 

 

Figure 9. Nodal distribution and background mesh for square plate 
resting on Winkler foundation with free edges (Case - II)  

Problem 2: Square plate resting on elastic foundation 

at the bottom and supporting multiple patch loads from 

columns. 

In this case, deflection due to load transferred by 

columns on the raft slab of a structure is modeled by 

considering a square plate (a/h = 50) resting on elastic 

foundation subjected to various patch loads as shown in 

Fig. 8. All patch loads are of equal size (0.02a × 0.02a) 

and are uniformly spaced in the domain (r = s). Each 

patch load is assumed to be uniformly distributed over the 

patch area.  Uniform distribution of nodes and rectangular 

background mesh employed for numerical integration is 

shown in Fig. 9. Contour diagrams for non-dimensional 

static deflection ( 4

0
aqD/ww  , ν =0.3) are given by Fig 

10(a) - Fig. 10(c). For K = 4, maximum deflection of the 

plate is 3.2000e-05. It reduces to 2.7062e-06 with 

increase in value of subgrade modulus to 8. With further 

increase in value of nondimensional modulus to 16, 

defection reduces to 2.3303e-07.  

 

Figure 10. (a) Non-dimensional deflection - Case- II  (K = 4, ν =0.3) 

( maxw  = 3.2000e-05) 

 

Figure 10. (b) Non-dimensional deflection - Case- II  (K = 8, ν =0.3) 

( maxw  = 2.7062e-06 ) 

 

Figure 10. (c) Non-dimensional deflection- Case - II  (K = 16, ν =0.3) 

( maxw  = 2.3303e-07) 
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It is quite apparent from the contour plots that as the 

values of subgrade modulus of soil increases, the 

deflection of the plate decreases due to the increased 

stiffness of the soil. It can also be noted from the Fig 7. 

and Fig. 10 that the plate deforms uniformly for small 

values of subgrade modulus whereas for higher value of 

soil modulus, plate deformation is local and is only near 

to the load application area. 

Problem 3: Nonlinear bending analysis of isotropic 

rectangular plate resting on Winkler foundation with 

different subgrade modulus (K) subjected to patch load 

or line load with clamped edges. 

Load-deflection curves for geometrically nonlinear 

bending analysis of clamped square plate subjected to 

patch load and line load for different subgrade modulus 

are presented in Fig. 11 and Fig. 12 respectively. A 

comparison of result is also made for nonlinear bending 

analysis of thin plate resting on Winkler foundation 

subjected to uniformly distributed load (UDL) and is 

found to match well in Fig. 11 with Ref [5]. 

 

Figure 11. Non-dimensional load versus deflection curve for nonlinear 
bending analysis of plate resting on Winkler foundation subjected to 

Patch Load . 

 

Figure 12. Non-dimensional load versus deflection curve for nonlinear 

bending analysis of plate resting on Winkler foundation subjected to 
line load. 

It is observed that the non-dimensional deflection 

reduces as the non-dimensional subgrade modulus 

increases from 40 to 80. Further, for a particular non-

dimensional load parameter, the non-dimensional 

deflection for the thicker plate (a/h = 10) is more 

compared to thinner plate (a/h = 50) due the effect of 

shear deformation. 

V. CONCLUSIONS 

Element free Galerkin method based on first order 

shear deformation theory and MK shape function is 

employed to investigate linear and nonlinear bending 

behavior of isotropic thin and thick rectangular plates 

resting on Winkler foundation. Numerical studies include 

effect of different loading conditions, boundary 

conditions and subgrade modulus on maximum deflection. 

It is observed from the results that the method is accurate 

and reliable for solving complex nonlinear problems. 

From the limited parametric study, it is observed that, the 

deformation of the plate and compression of the elastic 

foundation (settlement of foundation) is more localized 

near the loaded region for higher values of subgrade 

modulus and thicker plate. The compression of 

foundation becomes more uniform for lower values of 

subgrade modulus. 
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