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Abstract—In this study, we used a non-stationary random 

earthquake Clough-Penzien model to describe earthquake 

ground motion. Using stochastic direct integration in 

combination with an equivalent linear method, we 

established a solution for the non-stationary response of 

Lead-Rubber Bearing (LRB) system to a stochastic 

earthquake. We used two parameters to develop an 

optimization method for bearing design: the post-yielding 

stiffness and the normalized yield strength of the isolation 

bearing. Using the minimization of the maximum energy 

absorption level of the upper structure subjected to an 

earthquake as an objective function, and with the 

constraints that the bearing failure probability is no more 

than 5% and the second shape factor of the bearing is less 

than 5, we present a calculation method for the two optimal 

design parameters. In this optimization process, the Radial 

Basis Function (RBF) response surface was applied, instead 

of the implicit objective function and constraints, and a 

Sequential Quadratic Programming (SQP) algorithm was 

used to solve the optimization problems.  

 

Index Terms—seismic isolation structure, optimal design; 

Lead-Core Rubber Bearing (LRB), stochastic analysis 

 

I. INTRODUCTION 

By providing a seismic bearing between the building 

and the ground, a base isolation system can reduce the 

seismic response of the upper structure and therefore 

block seismic ground motion from passing into the upper 

structure. Through decades of application, base isolation 

has become the most widely used technique for 

controlling and reducing the seismic responses of 

structures. Generally, an isolation bearing must have a 

lower lateral stiffness to prolong the resonance period 

and reduce the lateral seismic action. In addition, an 

isolation bearing needs to have appropriate energy 

dissipation and high restoration ability to avoid excessive 

bearing displacement and instability. Numerous studies 

have shown that the mechanical properties of a bearing 

will greatly affect its seismic abilities. Thus, in recent 

years, the optimum design of mechanical parameters for 
isolation bearings has attracted the attention of 

researchers in a series of studies [1]-[9]. 

                                                        
Manuscript received April 13, 2015; revised August 2, 2015. 

This paper used two parameters to develop an 

optimization method for bearing design: the post-yielding 

stiffness and the normalized yield strength of the isolation 

bearing. Using the minimization of the maximum energy 

absorption level of the upper structure subjected to an 

earthquake as an objective function, and with the 

constraints that the bearing failure probability is no more 

than 5% and the second shape factor of the bearing is less 

than 5, a calculation method for the two optimal design 

parameters was proposed.  

II. AN INPUT SEISMIC GROUND MOTION MODEL 

A non-stationary Clough-Penzien [10] stochastic 

seismic model is used to describe earthquake 

excitation ( )ga t : 

2 2

2 2

2

( )= ( ) 2 ( ) ( ) 2 ( )

( ) ( ) 2 ( ) ( ) 2 ( ) (1)

( ) 2 ( ) ( ) ( ) ( )

g f f f f f g g g g g

f f f f f f g g g g g

g g g g g g
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     

     

  

  

   

   

(1) 

In this equation, ( )gx t  and ( )fx t are the responses 

of the filter, ,f g  are the characteristic frequencies 

of the filter, f and g are the filter damping ratios, 

( )w t is the white noise when the power spectral 

intensity is 0S , ( )a t is the time modulation function and 

the formula from Jennings and Housener [11] was 

adopted: 
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The peak acceleration of ground motion is 

3
gaPGA 

, so the relationship between 0S  nd PGA 

is [12] 
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III. THE MOTION EQUATION 

The nonlinear motion equation for the 

multi-degree-of-freedom lead-rubber bearing system 

under horizontal seismic excitation ( )ga t is 

( )s s s s s s s g ba x    M X C X K X M I     (4) 

1

( ) ( ) ( , ) 0
n

b g b i i b g Q b b

i

m a x m x x a F x x


        (5) 

where s ,M , sC  and sK are the mass, damping ratio 

and stiffness matrices of the upper structure, im is the 

mass of the i-th layer, 
1[ , , ]s nx x X is the 

displacement of the upper structure relative to the 

base, bm is the mass of the base, [1, ,1]I , s the 

hysteretic restoring force of the lead- rubber bearing and 

bx is the displacement of the base relative to the 

ground. 

In this paper, ( , )Q b bF x x  is treated as a bilinear 

model (dashed line in Fig. 1). Because the pre-yielding 

stiffness of the LRB is 10 - 15 times its post-yielding 

stiffness, under the condition of equal hysteresis area, 

the bilinear restoring force model simplifies to a 

rigid-plastic model (solid line in Fig. 1). Thus, 

( , )Q b bF x x can be expressed as 

( , )= (1 ) sign( )Q b b b b y bF x x N k x N f x       (6) 

where N is the total number of isolation bearings, bk is 

the pre-yielding stiffness of the bearing, yf  is the yield 

force of the bearing and is the ratio of pre-yielding and 

post-yielding stiffness. 

Based on a random equivalent linearization method, 

Equation (6) can be replaced with a linear equation: 

  ( , )= (1 ) ( )Q b b b b y e bF x x N k x N f c t x        (7) 

where ( )ec t  is the equivalent time-varying damping 

coefficient, which can be calculated as 

1 2
( )=

( )
b

e

x

c t
t 

            (8) 

In Equation (8), ( )
bx t is the time-varying standard 

deviation of
bx

.
 

Equation (7) is substituted into Equation (5) to yield 

the following equation: 

2

1

( ) ( ) (9)
n

i i b b b e b g

i

r x x x gc t x a t 


        (9) 

In this equation, 
i

i

z

m
r

M
 ,

1

=
n

z i b

i

M m m


  is the total 

mass of the isolation structure, 

b
b

z

N k

M


  ,

(1- ) y

z

N f

M g


   is the ratio of yield force to 

the mass of the isolation structure and two parameters 

( b and  ) determine the stiffness bk  and yield force 

yf  of the bearing.  

 
Figure 1. Hysteretic restoring force model of lead-rubber bearing 

IV. OPTIMAL BEARING DESIGNS WITH DETERMINISTIC 

STRUCTURAL PARAMETERS 

Based on Equation (9), it can be seen that 
b and   

determine the post-yielding stiffness and yield force. 

Therefore, we use 
b  

and   
as optimization 

parameters in this study. The objective function is set to 

minimize the ratio of the maximum energy absorptions in 

the upper structure with and without seismic isolation 

under the influence of an earthquake. The mathematical 

expression is 

   
 

 
 
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f
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
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





  
 

  





   (10) 

In this equation, 
2 ( , )b ix t  is 

2[ ( )]iE x t  when the 

base is seismically isolated, and 
2 ( , )f ix t is 

2[ ( )]iE x t  

when the base is fixed; both values can be calculated by 

using stochastic direct integration. 

While satisfying the above objective function, the 

following two constraint conditions also need to be 

satisfied: 

Constraint condition 1: The probability of the 

horizontal displacement of the isolation bearing 

exceeding the allowable limit under the seismic effect is 

less than 5%. Mathematically, this is expressed as 

   
 

 
0,

( , ) 1 min 5%b

b
t T

r t 


  F        (11) 

In this equation,  0
( )=exp 2 ( , )

t
t

br t v b d  , and 

( , )t

bv b  is expressed as follows:[13] 
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  (12) 

Here, b is the allowable displacement limit. According 

to the seismic code of China, 

min[0.55 ,300% ]b D ntr , where D is the bearing 

diameter, ntr is the total thickness of the rubber in the 

bearing, 
2( )= [ ( )]

bx bt E x t
, 

2( )= [ ( )]
bx bt E x t  and q(t) 

is a bandwidth parameter that can be expressed as 

follows: 

2

1

0 2

( )
( )= 1

( ) ( )

t
q t

t t



 


 

In this expression,
2

0( )= [ ( )]bt E x t , 

1( )= [ ( ) ( )]b bt E x t x t , and 
2

2 ( )= [ ( )]bt E x t . 

As shown in the following equation, ntr is related to 

the second stiffness, 2 bk k , of a single bearing: 

   2              (13) 

Here, N is the total number of isolation bearings, G is 

the shear modulus of the rubber, /[ ]d bA P   is the 

total area of all bearings, dP is the total vertical design 

load, and [ ]b is the allowable stress of the bearing 

design, usually 10-15MPa. 

By substituting /[ ]d bA P   into Equation (23), the 

following can be obtained. 

2
[ ]

d

b

GP
Nk

ntr 


 

Then, after dividing both sides of the above equation 

by the total mass of the structure, the following equation 

is obtained: 

2 (14)
[ ] [ ] [ ]

d d

z z b z b b

GP GP gNk G g

M ntr M ntr G ntr



  
  

     (14) 

Here, =z zG M g
 
is the representative value of 

gravity load in the structure, and = /d zP G is a number 

greater than 1. 

Because
22
b

z

Nk

M
 , Equation (14) can be converted 

to 

 
2[ ]b b

G g
ntr



 
              (15) 

Based on Equation (15), it can be seen that b in 

Equation (12) is a function of b , and when 
b is 

determined, the total rubber thickness in the bearing, ntr, 

is also determined. 
Constraint condition 2: To prevent instability under a 

vertical load, it is required that the second shape factor, 

S2, of the bearing should be greater than a limiting value 

m (m usually has a value of 4 - 6): 

2

D
S m

ntr
 

 

By substituting Equation (15) into the above equation, 

we get the following: 

2

2

[ ]
( , ) b b

b

DD
S m

ntr G g

 
 


       (16) 

Combining Equations (10), (11) and (16), a 

mathematical model of optimized bearing parameters can 

be obtained as follows: 

2

,

min ( , )

. . ( , ) 5%

( , )

b

obj b

b

b

b

Find

f

s t

S m

 

 

 

 





F         (17)

 

In the process of solving Equation (17), 

because ( , )obj bf    and ( , )b

b F  are implicit 

functions of ,b  , the computational efficiency would 

be very low if we attempt to solve it directly, resulting in 

not only long computation times but also non-convergent 

results. To improve the computational efficiency, we use 

an RBF response surface to make ( )objf and ( )b
F  

explicit [14], and a sequential quadratic programming 

(SQP) algorithm was used to solve the optimization 

problems. 

V. A CALCULATION EXAMPLE 

Taking a five-story office building made of reinforced 

concrete as an example, the plane of the standard floor is 

rectangular, the short side (x-direction) is 36m and the 

long side (y-direction) is 51m, as shown in Fig. 2. The 

building is located on a type II field (as shown in Table 

I).The earthquake ground motion enters in the x-direction, 

and the ground motion parameters are listed in Table I. 

Two conditions are considered for the peak ground 

acceleration: =0.5PGA g and =0.8PGA g .The basic 

period of the fixed base in the x-direction is 0.42s, and 

the limped mass and the inter-layer stiffness of every 

level are listed in Fig. 2(b).The isolation bearing layout is 

shown in Fig. 2(a), with a total of 40 lead-core rubber 

bearings that have a diameter (D) of 0.7m.If the bearing 

rubber has a shore hardness of 45 degrees, and the shear 

modulus G is 0.54MPa, then the second shape factor of 

the bearing is 2 5S m  .With  =1.3, the average stress of 

the bearing is = / /(40 ) 10.6Mpad z bP A M g A   (40 is 

the total number of isolation bearings, bA is the area of a 

single bearing). 

N Ak G /ntr
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(a) seismic isolation bearing layout 

 
(b) Calculation diagram 

Figure 2. Seismic isolation structure  

Fig. 3(a) shows the nephogram of constraint condition 

1, ( , )b

bF   , when =0.5PGA g . The thick dashed line 

indicates the contour line of ( , )b

bF   =5% and the 

shaded area is the region in which constraint condition 1 

is satisfied. Fig. 3(b) is the nephogram of the objective 

function ( , )obj bf   , the thick dashed line in the figure is 

the boundary of constraint condition 1. The dotted dashed 

line is the boundary of constraint condition 2, and the 

shaded portion is the region where both conditions are 

satisfied. The ● point is the optimal point of the 

parameters; the values of the optimized parameters 

are[ , ] [2.110,4.776%]opt opt

b  

figure that the optimal point is at the boundary of 

constraint condition 2, where the bearing has a value 

of 2 =5S . Because 2 =
D

S
ntr

, the total thickness of the 

rubber is = 5 0.14ntr D m . In addition, 

(1 ) opt

yopt

z

N f

M g





 , so the optimal yield force of a single 

bearing is 150kNopt

yf 

8.83MPa, we find that the diameter of the lead core is 

7.3cm. Fig. 4(a) shows the variation curve of the 

objective function ( , )opt

obj bf   with respect to   

when
opt

b b 

function has its minimum value (●point in the figure) 

when 4.776%opt   . Fig. 4(b) shows the variation 

curve of the objective function ( , )opt

obj bf    with 

respect to b  when
opt  , indicating 

that ( )objf  monotonously decreases with the decrease in 

b . However, when b <
opt

b , constraint condition 2 is 

not satisfied (that is, 2 5S  ), so the solution does not 

meet the stability requirement. 

 
(a)Nephogram of ( , )b

bF  
 

 

(b)Nephogram of
 

( , )obj bf  
 

Figure 3. Nephograms for ( , )b

bF  
 

and ( , )obj bf  
 

when 

=0.5PGA g . 

 
(a)Variation curve of ( , )opt

obj bf   with respect to . 

. It can be seen in the 

. When the yield stress of lead is 

. The figure indicates that the objective 
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(b) Variation curve of ( , )opt

obj bf   with respect to
b .

 

Figure 4. Variation curves of ( , )opt

obj bf  
 

with respect to 
 

and
b
 

VI. CONCLUSION 

In this paper, we proposed an optimization method for 

mechanical parameters for the design of lead-core rubber 

bearings system subjected to non-stationary earthquake 

ground motions. In this method, the post-yielding 

stiffness and normalized yield force are used as design 

variables, the minimum value of the maximum energy 

absorption level of the upper structure during an 

earthquake is used as an objective function, and the 

constraint conditions include the probability of bearing 

failure not exceeding 5% and the second shape factor of 

the bearing being less than 5. By combining the RBF 

response surface method and the SQP algorithm, we are 

able to solve the optimization problem and provide the 

optimal values for the design variables.  
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