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INTRODUCTION
Based on the stress-strain relationship,

buckling of plates may be classified as elastic

buckling or plastic buckling. Elastic buckling

is based on Hooke’s law where it is assumed

that the proportional limit of the plate material

In this paper, a solution for the plastic buckling of a thin rectangular isotropic plate with four
simply supported edges under uniform in-plane compression is presented. The plastic buckling
equation was derived using a deformation theory of plasticity and a work principle. The plate
analysis was carried out through a theoretical formulation based on Taylor-Maclaurin series and
application of energy method. The approximate shape function for the plate boundary conditions
using the Taylor-Maclaurin series was truncated at the fifth term. The shape function was
substituted into the plastic buckling equation and the critical plastic buckling load was obtained.
The plate buckling coefficient was determined for aspect ratios within the range of 0.1 and 1.0 at
increments of 0.1. The results were compared with solutions from previous studies and the
average percentage difference was 0.091%. This difference demonstrates that the Taylor-
Maclaurin series shape function is a very good approximation of the exact values for the
displacement function of the deformed SSSS plate.

Keywords: Critical buckling load, Deformation plasticity theory, Displacement function, In-
plane compression, Taylor-Maclaurin series, Thin plate

is greater than the buckling stress. In many

practical cases, however, buckling may occur

in the plastic range. The actual buckling load

in the plastic range is always lower than the

buckling load in the elastic range. Hence, it is

necessary to carry out plastic buckling analysis
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using plasticity theories so as to determine the
accurate buckling load when buckling occurs
in the plastic range.

The two commonly used plasticity theories
in plate buckling are the deformation theory
pioneered by Ilyushin (1947) and the flow (or
incremental) theory developed by Handelman
and Prager (1948). The deformation theory of
plasticity is mathematically less consistent in
comparison with the flow theory of plasticity.
However, most researchers accept that the
plastic buckling loads by deformation theory
are always in better agreement with
experimental results and that they have lower
numerical values than those obtained from the
flow theory. This is the well-known paradox of
plate plastic buckling, and a universally
accepted solution of the plastic buckling
paradox has not yet been presented (Pride
and Heimerl, 1949; Iskason and Pifko, 1969;
Becque, 2010).

In finding solutions to plate buckling
problems for both the elastic and plastic
ranges, the use of Fourier series or

trigonometric series in estimating the shape
function of the deformed plate exists in
literature. Irrespective of the plasticity theory
used, some researchers used the numerical
approach while others used the equilibrium
and energy approaches in finding solutions to
plastic buckling of plates. Studies by
researchers such as Stowell (1948), Iyengar
(1988), Shen (1990) and Wang et al. (2004)
involved the use of trigonometric series. The
use of Taylor’s series in solving plate buckling
problems has attracted very little attention.

To the best of the researchers’ knowledge,
the Taylor’s series has not been used in the
energy approach for analyzing the plastic
buckling of SSSS plates. Therefore, the aim
of this study is to use the Taylor-Maclaurin
series to solve the plastic buckling problem of
a thin rectangular isotropic plate with four
simply supported edges subjected to uniaxial
in-plane compressive loads. The problem
definition is illustrated in Figure 1. The
governing equation derived in the analysis is
based on the deformation theory of plasticity
using Stowell’s approach.

Figure 1: SSSS Thin Rectangular Plate under Uniaxial In-plane Loading
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w = AH ...(5)

p is the aspect ratio, t is the plate thickness,
a and b are the length and width of the plate
respectively, H is the plate buckling coefficient
and A is amplitude of the shape function.

Ibearugbulem (2012) expanded the shape
function using Taylor-Maclaurin series and
obtained
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where F(m)(x
0
) is the mth partial derivative of the

function with respect to x and F(n)(y
0
) is the nth

partial derivative of the function w and respect
to y. m! and n! are the factorials of m and n
respectively while x

0
 and y

0
 are the points of

origin. He truncated the infinite power series
at m = n = 4 and got
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The boundary conditions for an SSSS plate
are

   0 0; 0 0Rw R w R    ...(9)

MATHEMATICAL FORMULATION
Stowell (1948) expressed the differential
equation of equilibrium for the plastic buckling
of a thin, flat, rectangular plate under uniform
compression in the x-direction as:
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Where E
t
is the tangent modulus, E

s
 is the

secant modulus, N
x
 is the buckling load, D

—
  is

the plastic flexural rigidity of the plate and w is
the displacement in the z-axis. Transforming
the x – y coordinate system to R – Q coordinate
system, we have

;
x y

R Q
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 

It should be noted that R and Q are
dimensionless parameters.

Eziefula (2013) applied a technique based
on Ibearugbulem et al. (2013) where Equation
(1) was transformed using the principle of
conservation of work in a static continuum.
Eziefula (2013) made N

x
 the subject of formula

and obtained
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where

p = a/b ...(3)

2
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   1 0; 1 0Rw R w R    ...(10)

   0 0; 0 0Rw Q w Q    ...(11)

   1 0; 1 0Rw Q w Q    ...(12)

Substituting Equations (9) and (11) into
Equation (7) gave

J
0
 = J

2
 = 0; K

0
 = K

2
 = 0

Substituting Equation (10) into Equation (7)
and solving the resulting two equations
simultaneously gave

J
1
 = J

4
 ; J

3
 = –2J

4

Similarly, substituting Equation (12) into
Equation (7) and solving the resulting two
equations simultaneously gave

K
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4
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4

Substituting the values of J
0
, J

1
, J
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3
, J

4
,
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1
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2
, K

3
 and K

4
 into Equation (7) gave
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From Equations (5), (7) and (13), we have

4 4A J K ...(14)
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Partial derivatives of Equation (15) with
respect to R, Q or both R and Q gave
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Expanding and integrating Equations (16),
(17), (18), and (19) partially with respect to R
and Q in a closed domain respectively resulted
in
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Substituting the values in Equations (20),
(21), (22) and (23) into Equation (2) gave

0.23619 1 3 20.47183 0.236192 2 4 4
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The plastic buckling load may be expressed
as
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RESULTS AND DISCUSSION
The results from this study gave the equation
of critical plastic buckling load as
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From Iyengar (1988), the exact solution for
the plastic buckling of an SSSS plate using
Stowell’s approach is
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In Equation (28), m and n are the buckling
modes. For the first mode of buckling, m = 1.
Also, since we are interested in finding the
lowest value of N

x
 at which the plate buckles,

n must be equal to one (Iyengar, 1988). Hence,
Equation (28) may be simplified to
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The factor, E
t
/E

s
 is equal to one in elastic

buckling but its value is always less than unity
in plastic buckling. In this paper, the numerical
value of E

t
/E

s
 is taken to be equal to 0.9.

Table 1 shows the values of H from this present
study and Iyengar (1988) for different aspect
ratios using E

t
/E

s
 = 0.9.

Table 1: Values of H for Plastic Buckling
of Uniaxially Compressed SSSS Thin Rectangular Plate

p = a/b H from Present Study H from Iyengar (1988) Percentage Difference

0.1 94.6305 94.5100 0.1275

0.2 25.1954 25.1650 0.1208

0.3 12.3815 12.3678 0.1108

0.4 7.9490 7.9413 0.0970

0.5 5.9554 5.9500 0.0908

0.6 4.9335 4.9294 0.0832

0.7 4.3811 4.3778 0.0754

0.8 4.0883 4.0853 0.0733

0.9 3.9547 3.9520 0.0689

1.0 3.9277 3.9251 0.0662
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From Table 1, the highest percentage
difference is 0.1275% for p = 0.1, while the
lowest percentage difference is 0.0662% for
p = 1.0. The average percentage difference
between the solution from this present study
and Iyengar’s solution is 0.091%. Iyengar’s
solution is an exact solution obtained from
trigonometric series while the solution from the
present study is an approximate solution
based on Taylor-Maclaurin series. The solution
from the present study is an upper bound
solution. It can be observed that the closeness
of the two solutions improves as the aspect
ratio increases from 0.1 to 1.

CONCLUSION
In this study, plastic buckling analysis of a thin,
flat, rectangular, isotropic SSSS plate was
carried out using Stowell’s plasticity theory and
Taylor-Maclaurin series shape function. A work
technique was applied to determine the plate
buckling coefficient for different aspect ratios
of the plate. The results showed that the
solution is a very close approximation of the
exact solution. Therefore, the Taylor-Maclaurin
series is adequate for approximating the
deformed shape of the SSSS plate in the
plastic buckling analysis.
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