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ANALYSIS OF PROBABILISTIC
PEAK ACCELERATION RESPONSE

FOR RANDOM PEDESTRIAN LOADS

Song Jie1*, K T Tse1, Song Zhigang2 and Zhao Hongjiao3

Pedestrian loads that may cause excessive structural vibration involve some uncertain
parameters such as walking frequency, step length, dynamic load factors and phases of harmonic
components, which will lead to uncertainties of structural response and this issue need to be
solved by probabilistic analysis. Considering that the traditional Monte Carlo simulation method
for reliability analysis has rather low efficiency, an approach based on uniform design and response
surface method for calculating the probabilistic structural response induced by pedestrian vertical
loads is proposed to improve the efficiency of structural dynamic analysis with uncertainties. A
few representative samples of time history of pedestrian loads are simulated using uniform
design first, and then the corresponding peak acceleration response spectra are obtained by
dynamic analysis on beam structures with different spans and damping ratios. The spectra
which have a certain percentile are obtained by reliability analysis based on response surface
method. Then the general formulae of peak acceleration response spectra, which can be used
to calculate structural peak accelerations directly, are deduced from parametric analysis of
damping ratio and span. Monte Carlo simulation is conducted to validate the precision of this
method. The case study shows that compare to the results calculated by the proposed method,
the formulae in two widely-used codes such as BS 5400-2:2006, overestimate the peak
acceleration of structure with high frequency remarkably and it should be cautious when using
them to obtain structural responses.
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INTRODUCTION
With the development of building materials,
structural form, construction technology and
aesthetic standards, there is a trend that
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structures such as footbridges, gymnasium,
stadium and airport passage, are designed
to be lighter, slender and more flexible. Under
pedestrian loads, these structures with light
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mass and small damping usually hardly
undergo significant structural damage, but
excessive vibrations that affect structural
serviceability may occur due to inappropriate
design. For example, in 1993, Fujino et al.
reported that a cable-stayed pedestrian bridge
in Japan presented excessive vibration in the
congested condition. In 2000, during the
opening day of Millennium Bridge in London,
its vibration due to pedestrian was so
excessive that the bridge needed to be closed
on the opening day (Dallard, 2001; and
Strogatz et al., 2005). After this incident, the
issue of vibration serviceability of similar
structures caused by pedestrian loads has
increasingly aroused many scholars’ and
researchers’ attention (Song, 2003 and 2005;
Zivanovic, 2005, 2007a and b; Huang et al.,
2007; Piccardo et al., 2008; and Fa, 2008). In
these literatures, Zivanovic et al. (2005)
summarized a comprehensive literature
review on vibration serviceability of foot-
bridges under human-induced excitations,
including many aspects such as models of
human-induced walking force, physical
characteristics of footbridges, calculation
methods of structural response, criterion of
human comfort, etc.

In order to estimate vibration serviceability
of these structures, pedestrian loads should
be obtained to calculate structural vibration
response at first, and then according to the
criterion of human comfort, evaluation of
human comfort in terms of response indexes
such as peak acceleration, root mean square
(RMS) acceleration, etc., can be conducted.
Generally, there are two types of model of
vertical pedestrian load: deterministic model
and probabilistic model (Zivanovic, 2005). The

deterministic force model, e.g., sinusoidal
model, is simple and easy to be applied in
subsequent dynamic analysis. As a result,
deterministic sinusoidal models of vertical
walking load are adopted in some codes and
research. Based on a few deterministic time
histories of vertical walking loads, Song (2003
and 2005) proposed a convenient method
named response spectrum method, to
calculate structural peak acceleration
response. Silva et al. (2003 and 2007) used a
deterministic force model to study vibrations
of composite floor and footbridges caused by
rhythmic human activities. Figueiredo et al.
(2008) compared the structural acceleration
responses under four different deterministic
models of pedestrian vertical force. The results
suggest that the change of location of
pedestrian loads should be considered in the
calculation of acceleration response.

In reality, however, the pedestrian load is a
more complex narrow band random process
rather than deterministic forces (Zivanovic et
al., 2007b and 2011). Therefore, some
probabilistic models of vertical walking loads
also have been studied to obtain a more
accurate structural response that can reflect
the randomness property of loads and
responses. There are also mainly two types of
model: time- and frequency-domain models.
For time-domain, Zivanovic et al. (2007a) took
into account many variables in pedestrian
loads such as walking frequency, step length,
Dynamic Load Factor (DLF) and phrase of
each harmonic component, and subsequently
used Monte Carlo Simulation (MCS) to
generate 2000 samples of pedestrian loads.
They calculated the cumulative probability of
RMS acceleration of footbridge by statistical
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analysis of the 2000 time histories of structural
responses corresponding to the 2000 samples
of pedestrian loads and then obtained the RMS
acceleration with a certain percentile. Similar
to the concept in Song (2005), Zivanovic et al.
(2007b and 2011) and Wan et al. (2009)
provided a few probabilistic design spectra
for single walking scenario. In terms of
frequency-domain analysis, Eriksson (1994)
considered pedestrian loads as a stationary
random process and obtained its auto-spectral
density. Li et al. (2010) and Fan et al. (2010)
studied the auto-spectral density of vertical
walking loads and obtained the RMS
acceleration responses.

From the above discussion, it is clear that
the walking force is a narrow band random
process and the deterministic force model
may not reflect its randomness satisfactorily.
Moreover, it may overestimate structural
acceleration response significantly (Pimentel,
1997 and 2001) Therefore, calculating the
structural vibration response by probabilistic
force model is more reasonable. Obviously,
using MCS can solve this issue very
straightforwardly and simply. The conventional
probabilistic calculation method using MCS
can directly consider all stochastic variables
of pedestrian load and be conducted directly,
as in Zivanovic et al. (2007a). However, its
efficiency is rather low as it generally needs
covering a wide range of experimental datum
(sample space) and conducting lots of
experiments (simples). For example, a
reliability analysis with failure probability P

f 
 and

relative error of simulation , the required
sampling number of MCS N

 
  
 

2
100

f

N
P

...(1)

Owing to the failure probability P
f
 of a real

structure is often in the range of 10-3 ~ 10–4, it
can be deduced from the above Equation (1)
that MCS will lead to plenty of calculation effort.
Although the increasing advances of
computing power and speed, single calculation
of issues such as dynamic analysis, finite
element model, fluid dynamics model, etc., can
make minutes to hours, if not longer. So
analyses of these computer-based issues that
require a large number of repeated calcula-
tions to obtain a reliable result could be difficult
within a limited timeframe. Therefore, it can
be seen that MCS is time-consuming and
inefficient for these issues that the subsequent
calculation of each sample requires much time,
e.g., the dynamic analysis. The method of
frequency-domain analysis has less calcula-
tion and is comparatively more efficient with
respect to that of time-domain. However, the
methods in literature limit to reflecting the
stationary vibration response of structure
rather than the real transient vibration
response, which is excited by human walking
loads in a relative limited time. In addition, the
randomness of the excitement location, i.e.,
the location of foot, is not considered in this
method. Consequently, the structure vibration
responses based on the method may be
different from the one of real responses.

In order to solve the above problem
efficiently, the uniform experiment design (UD)
method is introduced in this paper. UD can
provide some representative samples, which
can reduce the required number of samples
significantly and cut down calculation work
remarkably. In this paper, some representative
samples of vertical walking loads were defined
by UD, and then the peak acceleration
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responses are obtained by dynamic analysis
in time-domain based on these samples of
load. The peak acceleration response spectra
with certain percentile were obtained by
reliability analysis based on Response Surface
Methodology (RSM). Some parametric
analyses of damping ratio and span were
conducted to provide general forms of
response spectrum. The MCS was made to
validate the precision of this method. Finally,
a case study was presented to show how to
use the spectra to calculate the related peak
acceleration of structure induced by vertical
pedestrian loads, together with a comparative
analysis about methods in some related
currently-used codes of practice to demons-
trate that these methods may overestimate the
structural response remarkably.

UD AND RSM
As mentioned in forgoing section, even though
the computing power of computer has been
improving remarkably, some engineering
issues still require a large amount of time to
obtain good accuracy. This deficiency may
become an obstacle to deal with some issues
such as dynamic analysis, finite element
analysis and reliability analysis. In order to
minimize the computational expense of
running these computer analyses for reliability
analysis that usually uses traditional MCS,
statistical approximation techniques, e.g.,
experiment design and RSM are becoming
widely used in engineering (Simpson, 2001a).
An experiment design systematically selects
a sequence of experiments to be performed,
which is essential for effective experimentation
(Simpson, 2001b) According to these
representative experiments, the RSM can form

an approximation of the relationship between
response/output and a number of input
parameters that is accurate enough to replace
the original model. Then we can make use of
this approximation to make subsequent
analysis so that the computationally expensive
simulation or calculation is no longer required,
which can facilitate analysis and enhance the
efficiency remarkably. A more extensive
introduction about RSM is given by Box (2007).

UD method is one of the above experiment
design methods. This method was proposed
by Fan and Wang, which scatters experiment
points uniformly in the range of experiment
parameters, i.e., design space, and selects a
sequence of representative experiment points
to organize experiments (Fang, 1994 and
2001). Essentially, it is a type of fractional
factorial design with an extra property of
uniformity. Similar to orthogonal experimental
design (OD), it carries out experiment runs
according to a series of specifically designed
tables, i.e., UD table. Compare to OD, UD has
higher efficiency as it requires fewer sample
points and obtain better coverage of design
space. UD table is important for select some
representative sample set and it is usually
expressed as U

N
 (qs), where U stands for

uniform design, N is the number of experiment
runs to conduct, q is the level number of each
parameter and s is the number of total
parameters that the table can contain at most.
It is obvious that the remarkable character of
UD is that its required number of experiment
usually equals the number of parameter levers.
This means that the number of experiment
organized by UD is much less than that
organized by OD or full factorial design. Take
an experiment with s parameters and q levels
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for each parameter, for instance, UD only needs

q experiment runs, while OD needs q2 runs and

full factorial design needs qs runs. With respect

to OD and full factorial design, UD can improve

experiment efficiency significantly, especially

for experiment involving more than 3 para-

meters or levels. Some successful applica-

tions are presented in (Fang, 1994, 2001,

2003 and 2008; Liang et al., 2001; Song et

al., 2010 and 2012). Fang (1994) also

provides many UD tables, which can be used

directly for applications.

For an experiment with m variables, X
1
, X

2,

…, X
m
, the procedures of UD are listed as

follows:

1. Defining the range [X
imin

, X
imax

] (i = 1, 2, …,
m) of each variable, where X

imin
 and X

imax

are minimum and maximum value of the
i th parameter, respectively.

2. Dividing each variable into n levels, usually
they are equally scattered,

 
  min max min

1
ij i i i

j
X X X X

n
                        ...(2)

where j = 1, 2, …, n is the level number; X
ij 
 is

the j th level of the i th parameter. Levels also

can be divided unequally, and the correspond-

ing process can refer to Fang (1994).

3. Choosing a proper UD table to design the

experiment

The selection of UD table is determined by

the numbers of parameters and of levels. We

can use appropriate UD table U
n
 (nm) in Fang

(1994) or we can construct UD table according

to the methodology in Fang (1994 and 2003).

After finishing all experiments, the correspon-

ding response surface can be formed based
on the input variable sets and the output.

Simpson et al. (2001) compared four
design experiments by examples and the
results show that the good design space
coverage of UD tends to provide more
accurate approximation globally even with a
low sample size. Song et al. (2010, 2012)
conducted a reliability analysis of compartment
fire by adopting UD. The results of 24 sets of
experiments run designed by UD present good
agreement with the ones of 5,000 MCSs, which
can show the efficiency of UD.

SIMULATION OF HUMAN-
INDUCED WALKING FORCE
BASED ON UD
In time-domain, vertical pedestrian waking
loads are usually expressed as (Ebrahimpour
et al., 1996; Zivanovic et al., 2005 and 2011)

 


 
   

 


1

( ) 1 cos(2 )
n

i s i
i

F t W DLF i f t         ...(3)

where, W is pedestrian weight; DLF
i
 is

dynamic load factor of ith harmonic
component; f

s
 is walking step frequency; 

i
 is

phase of ith harmonic component. According
to Kerr’s study (2001), the DLFs of higher
harmonic are small and by the fifth harmonic
the DLFs are about zero. This paper therefore
considers only the first five harmonic
components and the dynamic component of
vertical walking loads could be expressed as

 


  
5

1

( ) cos(2 )i s i
i

F t W DLF i f t ...(4)

The duration and location of the above load
model are also related to step length L

s
, so

the pedestrian walking loads reconstructed by
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the Equation (4) contain 13 parameters totally,
i.e., pedestrian weight W, walking step
frequency f

s
, step length L

s
, DLFs and phase


i
 of the first five harmonic component.

According to Zivanovic et al. (2007a, 2011)
and Kerr et al. (2001), these parameters and
their probability distribution are shown in Table
1, which are represented as X

1
 – X

13

hereinafter for ease of referencing.

As the foregoing discussion, it is very
straightforward to use MCS method to simulate
many samples of vertical walking forces based
on Equation (4) and distribution of each
parameter in Table 1, as in Zivanovic et al.
(2007a) and Fa et al. (2008). However, this
method will cause a lot of calculation works
for the subsequent dynamic response analysis.
Therefore, UD method is introduced here to
reduce the required number of samples and
solve the issue efficiently.

The steps of UD for this issue are listed as
follows.

(1) Defining the range [X
imin

, X
imax

] (i = 1,2,…,m)
of each variable. In this paper, the range of
each uniform parameter, i.e., the phase, is [0,
2]; the range of each normal parameter is

  min 3i i iX ...(5a)

  max 3i i iX ...(5b)

where 
i
 and

i
 are mean value and standard

deviation of the parameter X
i
 respectively.

(2) Dividing each parameter into n levels
equally,

 
  min max min

1
ij i i i

j
X X X X

n
...(6)

where j=1,2,…,n is the level number, X
ij 
is the

j th level of the i th parameter. In this paper, all
parameters are divided equally into 30 levels
in their own range. The levels of all parameters
are shown in Table 2. It should be noted that in
Table 2 some levels that are less than zero are
replaced by zero as they are meaningless with
negative values.

                      Parameters Distribution Mean Standard Deviation

f
s
/Hz X

1
normal 1.87 0.186

L
s
/m X

2
normal 0.71 0.071

W/N X
3

normal 640 82

DLF1 X
4

normal 
DLF1*

0.16
DLF1

DLF2 X
5

normal 0.07 0.030

DLF3 X
6

normal 0.05 0.020

DLF4 X
7

normal 0.05 0.020

DLF5 X
8

normal 0.3 0.015


i
(i = 1 ~ 5) X

9 
~ X

13
uniform in [0, 2] – –

Table 1: Parameters Involved in Pedestrian Load Model
and Their Probability Distributions

Note: 
DLF1

 is relative to step frequency f
s
, the relationship is 

DLF1
 = –0.2649;f

s
3+1.3206;f

s
2–1.759f

s
+0.7631–0.2649f

s
3+1.3206

f
s
2–1.759f

s
+0.7613, see Pimentel (2004).
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Table 2: Levels of All Parameters

X X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

X
13

1 1.31 0.50 394 0.52 0 0 0 0 0.00 0.00 0.00 0.00 0.00

2 1.35 0.51 411 0.553 0 0 0 0 0.11 0.11 0.11 0.11 0.11

3 1.39 0.53 428 0.586 0 0 0 0 0.22 0.22 0.22 0.22 0.22

4 1.43 0.54 445 0.619 0 0.048 0.048 0 0.33 0.33 0.33 0.33 0.33

5 1.47 0.56 462 0.652 0.069 0.131 0.131 0 0.43 0.43 0.43 0.43 0.43

6 1.50 0.57 479 0.686 0.158 0.214 0.214 0.017 0.54 0.54 0.54 0.54 0.54

7 1.54 0.59 496 0.719 0.246 0.297 0.297 0.121 0.65 0.65 0.65 0.65 0.65

8 1.58 0.60 513 0.752 0.335 0.379 0.379 0.224 0.76 0.76 0.76 0.76 0.76

9 1.62 0.62 530 0.785 0.424 0.462 0.462 0.328 0.87 0.87 0.87 0.87 0.87

10 1.66 0.63 547 0.818 0.512 0.545 0.545 0.431 0.98 0.98 0.98 0.98 0.98

11 1.70 0.64 564 0.851 0.601 0.628 0.628 0.534 1.08 1.08 1.08 1.08 1.08

12 1.74 0.66 581 0.884 0.69 0.71 0.71 0.638 1.19 1.19 1.19 1.19 1.19

13 1.77 0.67 598 0.917 0.778 0.793 0.793 0.741 1.30 1.30 1.30 1.30 1.30

14 1.81 0.69 615 0.95 0.867 0.876 0.876 0.845 1.41 1.41 1.41 1.41 1.41

15 1.85 0.70 632 0.983 0.956 0.959 0.959 0.948 1.52 1.52 1.52 1.52 1.52

16 1.89 0.72 649 1.017 1.044 1.041 1.041 1.052 1.63 1.63 1.63 1.63 1.63

17 1.93 0.73 665 1.05 1.133 1.124 1.124 1.155 1.73 1.73 1.73 1.73 1.73

18 1.97 0.75 682 1.083 1.222 1.207 1.207 1.259 1.84 1.84 1.84 1.84 1.84

19 2.01 0.76 699 1.116 1.31 1.29 1.29 1.362 1.95 1.95 1.95 1.95 1.95

20 2.04 0.78 716 1.149 1.399 1.372 1.372 1.466 2.06 2.06 2.06 2.06 2.06

21 2.08 0.79 733 1.182 1.488 1.455 1.455 1.569 2.17 2.17 2.17 2.17 2.17

22 2.12 0.81 750 1.215 1.576 1.538 1.538 1.672 2.28 2.28 2.28 2.28 2.28

23 2.16 0.82 767 1.248 1.665 1.621 1.621 1.776 2.38 2.38 2.38 2.38 2.38

24 2.20 0.84 784 1.281 1.754 1.703 1.703 1.879 2.49 2.49 2.49 2.49 2.49

25 2.24 0.85 801 1.314 1.842 1.786 1.786 1.983 2.60 2.60 2.60 2.60 2.60

26 2.27 0.86 818 1.348 1.931 1.869 1.869 2.086 2.71 2.71 2.71 2.71 2.71

27 2.31 0.88 835 1.381 2.02 1.952 1.952 2.19 2.82 2.82 2.82 2.82 2.82

28 2.35 0.89 852 1.414 2.108 2.034 2.034 2.293 2.93 2.93 2.93 2.93 2.93

29 2.39 0.91 869 1.447 2.197 2.117 2.117 2.397 3.03 3.03 3.03 3.03 3.03

30 2.43 0.92 886 1.48 2.286 2.2 2.2 2.5 3.14 3.14 3.14 3.14 3.14
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(3) Choosing a proper UD table to design the
experiment

As mentioned before, the experiment involves
13 parameters and each parameter has 30

levels, the table U
30

*(3013) therefore is

selected, which is presented in Table 3. The

table can contain 13 parameters and each

parameter has 30 levels. Once we have

Table 3: UD Table U30*(3013)

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

X
13

1 1 2 5 6 8 15 17 19 20 21 22 27 28

2 2 4 10 12 16 30 3 7 9 11 13 23 25

3 3 6 15 18 24 14 20 26 29 1 4 19 22

4 4 8 20 24 1 29 6 14 18 22 26 15 19

5 5 10 25 30 9 13 23 2 7 12 17 11 16

6 6 12 30 5 17 28 9 21 27 2 8 7 13

7 7 14 4 11 25 12 26 9 16 23 30 3 10

8 8 16 9 17 2 27 12 28 5 13 21 30 7

9 9 18 14 23 10 11 29 16 25 3 12 26 4

10 10 20 19 29 18 26 15 4 14 24 3 22 1

11 11 22 24 4 26 10 1 23 3 14 25 18 29

12 12 24 29 10 3 25 18 11 23 4 16 14 26

13 13 26 3 16 11 9 4 30 12 25 7 10 23

14 14 28 8 22 19 24 21 18 1 15 29 6 20

15 15 30 13 28 27 8 7 6 21 5 20 2 17

16 16 1 18 3 4 23 24 25 10 26 11 29 14

17 17 3 23 9 12 7 10 13 30 16 2 25 11

18 18 5 28 15 20 22 27 1 19 6 24 21 8

19 19 7 2 21 28 6 13 20 8 27 15 17 5

20 20 9 7 27 5 21 30 8 28 17 6 13 2

21 21 11 12 2 13 5 16 27 17 7 28 9 30

22 22 13 17 8 21 20 2 15 6 28 19 5 27

23 23 15 22 14 29 4 19 3 26 18 10 1 24

24 24 17 27 20 6 19 5 22 15 8 1 28 21

25 25 19 1 26 14 3 22 10 4 29 23 24 18

26 26 21 6 1 22 18 8 29 24 19 14 20 15

27 27 23 11 7 30 2 25 17 13 9 5 16 12

28 28 25 16 13 7 17 11 5 2 30 27 12 9

29 29 27 21 19 15 1 28 24 22 20 18 8 6

30 30 29 26 25 23 16 14 12 11 10 9 4 3



9

Int. J. Struct. & Civil Engg. Res. 2012 Song Jie et al., 2012

defined the UD table, each experiment can be

organized in the light of the table. For example,
the eighth row of the table is {8, 16, 9 …}. The
numbers in the row mean that the parameter
set in the eighth experiment is the eighth level
of X

1
, the 16th level of X

2
, the ninth level of X

3
,

and so on. Then time history of the eighth
walking load can be obtained by substituting
these 13 parameter defined by UD table into
Equation (4). The time history of the eighth
vertical walking load is shown in Figure 1. All
30 groups of parameter determined by the
U

30
*(3013) are shown in Table 4.

Figure 1: Load History Defined
by the Eighth Sets of UD Table
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Table 4: All 30 Groups of Parameter Determined by U30*(3013)

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

X
13

1 1.31 0.51 462 0.087 0.067 0.064 0.073 0.066 0.76 1.73 2.06 2.27 2.92

2 1.35 0.54 547 0.125 0.160 0.015 0.031 0.053 1.63 0.22 0.87 1.30 2.60

3 1.39 0.57 632 0.168 0.061 0.093 0.000 0.041 2.49 2.06 3.03 0.32 2.27

4 1.43 0.60 716 0.218 0.154 0.044 0.077 0.028 0.00 0.54 1.84 2.71 1.95

5 1.47 0.63 801 0.274 0.054 0.000 0.036 0.016 0.87 2.38 0.65 1.73 1.63

6 1.50 0.66 886 0.131 0.148 0.073 0.000 0.004 1.73 0.87 2.82 0.76 1.30

7 1.54 0.69 445 0.185 0.048 0.023 0.081 0.000 2.60 2.71 1.63 3.14 0.97

8 1.58 0.72 530 0.245 0.141 0.102 0.040 0.075 0.11 1.19 0.43 2.17 0.65

9 1.62 0.75 615 0.312 0.042 0.052 0.000 0.063 0.97 3.03 2.60 1.19 0.32

10 1.66 0.78 699 0.386 0.135 0.002 0.085 0.050 1.84 1.52 1.41 0.22 0.00

11 1.70 0.81 784 0.176 0.036 0.081 0.044 0.038 2.71 0.00 0.22 2.60 3.03

12 1.74 0.83 869 0.246 0.129 0.031 0.002 0.025 0.22 1.84 2.38 1.63 2.71

13 1.77 0.86 428 0.322 0.030 0.110 0.089 0.013 1.08 0.32 1.19 0.65 2.38

14 1.81 0.89 513 0.404 0.123 0.060 0.048 0.001 1.95 2.17 0.00 3.03 2.06

15 1.85 0.92 598 0.493 0.023 0.011 0.007 0.000 2.82 0.65 2.17 2.06 1.73

16 1.89 0.50 682 0.213 0.117 0.089 0.093 0.072 0.32 2.49 0.97 1.08 1.41

17 1.93 0.53 767 0.297 0.017 0.040 0.052 0.059 1.19 0.97 3.14 0.11 1.08

18 1.97 0.56 852 0.387 0.110 0.000 0.011 0.047 2.06 2.82 1.95 2.49 0.76

19 2.00 0.59 411 0.481 0.011 0.069 0.098 0.035 2.92 1.30 0.76 1.52 0.43

20 2.04 0.61 496 0.579 0.104 0.019 0.056 0.022 0.43 3.14 2.92 0.54 0.11

21 2.08 0.64 581 0.239 0.005 0.098 0.015 0.010 1.30 1.63 1.73 2.92 3.14
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Table 4 (Cont.)

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

X
13

22 2.12 0.67 665 0.332 0.098 0.048 0.102 0.000 2.17 0.11 0.54 1.95 2.82

23 2.16 0.70 750 0.429 0.000 0.000 0.060 0.000 3.03 1.95 2.71 0.97 2.49

24 2.20 0.73 835 0.529 0.092 0.077 0.019 0.069 0.54 0.43 1.52 0.00 2.17

25 2.24 0.76 394 0.630 0.000 0.027 0.106 0.056 1.41 2.27 0.32 2.38 1.84

26 2.27 0.79 479 0.246 0.086 0.106 0.064 0.044 2.27 0.76 2.49 1.41 1.52

27 2.31 0.82 564 0.344 0.000 0.056 0.023 0.032 3.14 2.60 1.30 0.43 1.19

28 2.35 0.85 648 0.441 0.079 0.007 0.110 0.019 0.65 1.08 0.11 2.82 0.87

29 2.39 0.88 733 0.539 0.000 0.085 0.069 0.007 1.52 2.92 2.27 1.84 0.54

30 2.43 0.91 818 0.634 0.073 0.036 0.027 0.000 2.38 1.41 1.08 0.87 0.22

Peak Response Spectrum of Structure
Induced by Vertical Loads from
Walking

Once the vertical loads of human walking have
been defined, the corresponding structural
response, which can be used to evaluate the
structural serviceability, can be calculated by
structural dynamic analysis. Since the boundary
conditions of structures hardly have substantial
influence on the structural responses for this
type of loads Song (2004) and Song and Jin
(2005), only simply supported beam is
analyzed here. The equation of motion of the
structure under the excitation of single
pedestrian is usually expressed their modal
form as (Zivanovic et al., 2007, 2007a and
2011; and Wan, 2009),


 

 
    

 
  2 ( )
( ) 2 ( ) ( ) sin p

n n

vF t
y t y t y t t

M L ...(7)

where y(t) is the modal vertical displacement
of structure; and  are structural damping
ratio and frequency of the mode, respectively;
only considering the first mode, M is the
generalized mass of the first mode and F(t) is
the vertical walking loads by single pedestrian
defined in the foregoing section.

It should be noted that the location of loads

defined by Equations (4) and (7) not only varies

with time, but also the loads just excite on some

certain points, instead of a continuing force on

the beam like a vehicle force model in Equation

(7) as shown in Figure 2. Therefore, the force

model in Equation (7) may not reflect the actual

human walking excitation accurately. In this

paper, a force model that just excites on the

locations of foot is proposed as in the following

Equation (8), which can reflect the mechanism

of walking excitation more accurately. For the

beam-type structure shown in Figure 2, the

structural response can be calculated

according to the following equation of motion,

Figure 2: Structure and Excitation
from Pedestrian Walking
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
     

         

2 2 3 2

12 2 2 2

( , ) ( , ) ( , )
( )

v x t v x t v x t
EI x m

x x x t t

 



   

 
1

( , )
( 1) ( )

sN

s
i

v x t
c x i L F t

t
...(8)

where  (x, t ) is the vertical displacement of
beam; EI, m and c are bending stiffness, mass
of unit length and damping of beam,
respectively; N

s
 is total number of steps

required to cross the beam; F(t) is the vertical
loads of walking obtained in foregoing section;


1 
is the ratio of Rayleigh damping to stiffness;

 (x) is defined as




  

0             0
( )

1              0

x
x

x ...(9)

A common method to solve Equation (8) is
mode superposition method to uncouple it to
Single-Degree-of-Freedom (SDOF) systems
as follows (Clough, 1993),

      22 ( ) /k k k k k k k kY Y Y Q t M                    ...(10)

where  , ,k k kY Y Y , 
k
 and 

k 
are modal (or gene-

ralized) acceleration, velocity, displacement,
damping ratio and circular frequency for the

kth mode, respectively;   2

0
( )

L

k kM x mdx is

modal mass for the kth mode(in the initial
calculation of this paper, M

1
 is set as 1), where

 ( )k x  is k th mode; ( )kQ t  is modal load for the

k th mode and can be calculated by

  


  0
1

( ) ( 1) ( ) ( )
sN

L

k s k
i

Q t x i L F t x

 0 ( ) ( )
L

k sF t s L dx ...(11)

here, s = 1, 2, …, is the sequence number of

steps on the structure, so s × L
s
 is the location

of each foot, where s can be defined by the
following equation,

 int( )        s ds f t t t ... (12)

where t
d
is duration of pedestrian walking on

the structure; int(.) is the integral function
towards zero. After the modal responses are
obtained by solving the Equation (10) using
step-by-step method, the structural accelera-

tion response ( , )v x t  can be expressed as

 
1

( , ) ( ) ( )
n

k kv x t x Y t ...(13)

For the simply supported beam, the mode

shape ( )k x  is

 ( ) sink

k
x x

L
...(14)

Only the response of the first mode is
calculated here since the response of the first
mode is dominant (Song et al. 2005; Zivanovic
et al., 2007 and 2011) and the second mode
shape is zero at the mid-span. Therefore, the
resultant acceleration response can be
expressed as:

  
1 1 1( , ) ( ) ( ) sin( ) ( )

x
v x t x Y t Y t

L
...(15)

Hence, it is apparent that the maximum
structural acceleration response in the Eq. (15)
is at the mid- span. So the peak response of
structure with circular frequency 

j
 could be

deduced from the following equation,

   
1 1( ) max ( ) ( )p jS x Y t

  
  

 
 

1 1max sin( ) ( ) max ( )
x

Y t Y t
L          ...(16)
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Therefore, the peak acceleration response
spectrum of structure under walking loads can
be obtained by calculating the peak response
of structures with different frequency 

j
. Since

response spectrum is also related to damping
ratio of the first mode 

1
 and structural span L

(or duration of vibration), five different modal
damping ratios 

1
, i.e., 0.05, 0.02, 0.01, 0.005

and 0.002, the range of which is referred to
the recommendation proposed by Bachman
et al. (1995), and six different spans, i.e., 6 m,

9 m, 12 m, 18 m, 24 m and 32 m, are
considered in calculation, respectively..Length
of be confined to, only the peak acceleration
response spectra of beam with damping ratio
0.05 are given in Figure 3 as the green
background, which contains 30 sets of
response. To be consistent with the response
calculation proposed by Song et al. (2005),
the values of response spectrum in the figures
are divided by mean value of pedestrian
weight.

Figure 3: Peak Acceleration Response Spectra of Simply Supported Beam
With Damping Ratio 0.05 (Green Background is 30 Response Spectra,

and The Red Heavy Line Curve is Response Spectrum With 95% Percentiles)

(a) Damping Ratio 0.05, Span 6 m (b) Damping Ratio 0.05, Span 9 m

(c) Damping Ratio 0.05, Span 12 m (d) Damping Ratio 0.05, Span 18 m
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Probabilistic Response Spectrum
Analysis

It is obvious that for each structure with a

certain frequency, 30 samples of walking load

will produce 30 acceleration responses, and

then a RS function between the response and

the parameters of experiment can be obtained

by regression analysis. This is a multiple

regression, which can choose many functions,

and in this paper the following linear fitting

function is selected,




 
13

1

( )p j l l
l

S a X b ...(17)

where X
l
(l =1, 2,.., 13) is the parameter as

shown Table 1. The RS function of spectrum

for all frequency 
j
 can be obtained by

regression analysis for each structural

frequency 
j
 point by point. For example, the

parameters of the fitting function of RS of
structure with span = 12 m, = 0.05 and natural
frequency 

j
 = 4 are shown in Table 5.

Once the RS function at each frequency 
j

is obtained, the response spectrum S
p(j

)
with 95% percentile at every structural
frequency 

j
 can be deduced from the

following equation,

     ( ) 1.645
j jP j p pS ...(18)

where p j and  p j are mean and standard

deviation of response spectrum at frequency


j
, respectively, which can be calculated from

the First-order Second-moment method,

 


 
13

1
lp l X

l

a b    


 
13

2 2

1
lp l X

l

a         ... (19)

here, 
lX and

lX are mean and standard

deviation of the l th parameter X
l
, respectively.

Figure 3 (Cont.)

(e) Damping Ratio 0.05, Span 24 m (f) Damping Ratio 0.05, Span 32 m

Table 5: Regression Parameters ai and b (L= 12 m, = 0.05,  = 4 rad/s)

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
10

a
11

a
12

a
13

b

1.94 –7.28 0.001 7.20 2.68 2.36 7.52 –0.09 0.04 –0.20 0.09 0.17 0.11 0.00
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Therefore, peak acceleration response
spectra with 95% percentile for different
damping ratios and different spans can be
obtained, which are presented in Figure 3 as
red heavy line curves and Figure 4.

For subsequent analysis, the regression
analysis is made on response spectrum of
structure with span = 12 m, and  = 0.01. The
fitting results are expressed as Equation (20),
and the fitting curves are shown in Figure 5.

Figure 4: Spectra for 6 Different Spans and 5 Different Ratios

(a) Spectra for Span = 6 m
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(b) Spectra for Span = 9 m
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(c) Spectra for Span = 12 m (d) Spectra for Span = 18 m
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(e) Spectra for Span = 24 m (f) Spectra for Span = 32 m
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Figure 5: Peak Acceleration Response
Spectrum of Structure

with Span=12 m, = 0.01

   ( , 0.01, 12 )P stS f L m

 
 



   





2 21.967 2.210
( ) ( )

0.7060 0.2571

0.581 0.204

4.477 3.670 0.455

0.693 0.0286

st st

st

f f

st

f

e e

f

0 Hz < f
st  

<1 Hz

1 Hz  f
st  

< 5 Hz

5 Hz  f
st 
 19 Hz ...(20)

where f
st
 is structure frequency.

PARAMETRIC ANALYSIS
As can be seen in the results of response

spectra in Figure 4, it is clear that all curves of

spectrum have similar characteristics of shape

although there are relative differences in

numerical value. The characteristics of these

spectra in three different structure frequency

f
st
 intervals can be explained as follows:

(1) 0 Hz<f
st
<1 Hz. The envelop curve for all

fitting response spectrum in this interval is
given as the Equation (21) since there is only
slight difference between all spectra within this
interval,

   ( , , ) 0.586 0.219P st stS f L f                    ...(21)

It can be seen that the response spectrum
in this interval only increases with structure
frequency f

st
.

(2) 1 Hz  f
st 
< 5 Hz. Since this interval includes

the range of walking frequency f
s
, the response

of structure may be magnified by potential
resonance. From the Figure 4, it can be seen
that all maximum values of peak acceleration
response spectrum are located at about
2.2 ~ 2.3 Hz. Relative values of all response
spectra are obtained on the base of the
response spectrum of structure with span L =
12 m,  = 0.01, in other word, being divided
by the corresponding spectrum value of of
structure with span L = 12 m, = –0.01. Then
the sensitivity function  (, L) for  and L can
be obtained by regression analysis for the all
relative value,

 


 



0.8253 33.47 0.06676

( , )
1 121.02

L
L          ...(22)

Therefore, the common function of peak
response spectrum S

P(fst
, , L) for structure

with frequency in this interval can be expressed
as follows:

    ( , , ) ( , 0.01, 12 )P st P stS f L S f L m   ( , )L

 
  

    
 

2 21.967 2.210
( ) ( )

0.7060 0.25714.477 3.670 0.455
st stf f

e e




 



0.8253 33.47 0.06676

1 121.02

L
     ...(23)
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It is apparent that the response spectrum in
this interval increases with decrease in î and
increase in L.

(3) 5  f
st 
 19Hz. The linear function of

spectrum obtained by regression analysis for
all response spectrums in this interval is as
follow:

   ( , , ) 0.3766 1.236P stS f L

                       0.0098 0.0049stf L       ...(24)

From the Figure 4 and the above Equation
(20) we can see that the response spectrum
in this interval has little correlation to , f

st
 and L.

Therefore, the S
P(fst

, , L) for any f
st
, and L

can be obtained by some simple procedures as
follows: 1) Calculating structural properties such
as f

st 
 and M

1
; 2) Selecting a formula from

Equations (21), (23) or Equation (24) according
to f

st
, and then calculating S

P(fst
, , L) by the

selected equation; 3) The actual peak acceleration
response of the structure is S

P(fst
, , L) × 

W 
/M

1
.

STRUCTURE RELIABILITY
ANALYSIS BASED ON MONTE
CARLO SIMULATION
In order to validate the precision of this method,

probabilistic structural dynamic responses are

also calculated by Monte Carlo simulation.

5000 MCSs are carried out on the simply

supported beam with span=12 m, damping

ratio = 0.01, structure frequency = 2 Hz, 4 Hz

and 10 Hz, respectively. The calculation

procedure is listed as follow:

1. Generate 5000 random samples for each

parameter according to the probability

distribution of each parameter in Table 1;

2. Obtain 5000 pedestrian loads by
substituting the 5000 sets of parameters
into the Equation (4);

3. Exert the 5000 loads on the structure
respectively, and then obtain the
corresponding 5000 peak acceleration
responses by dynamic analysis in time-
domain;

4. Calculate the Cumulative Distribution curve
(CDV) of peak acceleration response by
statistic analysis, then response value with
95% percentile can be obtained from the
corresponding CDV easily.

The CDV of each structure is shown in the
Figure 6. And for comparison, the acceleration
responses with same percentile calculated by
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Figure 6: CDV of Peak Acceleration Response Spectrum
of Structure with Span = 12 m, = 0.01
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(b) Structure Frequency 4 Hz (c) Structure Frequency 10 Hz
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MCS and UD are shown in Table 6. It can be
seen that the differences between the results
of two methods are small, which means that
the method proposed in this paper has a
satisfied precision. The cause of the minor
differences may be that for calculating
response spectrum rapidly and easily, the
linear fitting regression is adopted to construct
RS, which will definitely lead to some
differences. If a more appropriate fitting
function is chose according to each RS at each
frequency, the subsequent reliability analysis
would have better results.

CASE STUDY
In order to show the procedure of calculating
structural peak acceleration based on the
response spectrum, a case study is presented
here. The peak acceleration of the structure is
obtained according to the given equations in
this paper, i.e., Equations (21), (23) or
Equation (24). And for comparison, the peak
acceleration responses of the case are also
evaluated by referring some standards such
as BS 5400-2:2006 and Canadian Highway
Bridge Design Code.

In the foregoing two codes, some proce-
dures to calculate the peak acceleration
response of beam structures with one, two or

three spans excited by single pedestrian are

provided. The procedures in these two codes

are similar and hence only the latter one are

explained here. In Canadian Highway Bridge

Design Code, the peak acceleration of simply

supported beam structure can be directly

calculated by

  2 2
14 sa f w K ... (25)

where, a= peak acceleration, m/s; f
1
 is the first

flexural frequency, which is less then 5Hz; w
s
=

maximum static superstructure deflection due
to a vertical concentrated load applied at the
mid-span; K is configuration factor, which is
1.0 for single span;  is dynamic response
factor, which is a function of damping and can
be determined by the Figure C.3.4.4(f) in
Commentary on CAN/CSA-S6-00.

The case is a simply supported footbridge
across a street. The main beam of the
footbridge is box girder with a span L= 28m,
section A= 0.1450 m2, and moment of inertia I
is 0.017208 m4. The material is steel with
density of 7.9 × 103 kg/m3 and the Young
modulus 2.0 × 1011 Pa. The damping ratio the
structure = 0.005. The plan and two sections
of the structure are shown in Figure 7. The
procedures of predicting the peak acceleration

Table 6: Results of the Peak Acceleration Spectrum Based on Monte Carlo Simulation
and the Peak Acceleration Spectrum Based on UD

                 
Method

Structure Frequency

2 Hz 4 Hz 10 Hz

Monte Carlo Simulation 8.04 0.44 0.15

UD Method 7.77 0.39 0.17

Differences(%) 3.4 11.4 13.3
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Figure 7: Plan and Two Sections of the Structure (All Dimensions are in mm)

Plot of Main Beam

response by the code and the method of
response spectrum and their results are shown
in Table 7.

From the Table 7, it can be seen that for
this case, there is a large difference between
the two acceleration responses and the results
calculated from the code is much higher than

the one obtained from the response method.
In other words, the formula in the code
overestimates the response of this structure
significantly, which favors the statement
proposed by Pimentel et al. This is because
in the code, the frequency of vertical force by
walking is assumed to coincide with the first
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Table 7: Procedures of Calculating the Peak Acceleration Response
by the Two Methods and Their Results

Canadian Highway Bridge Design Code Method of Response Spectrum

Evaluating formula  2 2
14 sa f w K   1 1( , , )Pa S f L

1. Structural mass of unit length 1. m = 1146 kg/m

     m = A = 1146 kg/m 2. f
1
 = 3.47 Hz

2. ƒ
1


 

42

EI

mL
3.47 Hz 3. The first generalize mass   2

1 10
( )

L
M x mdx =16041 kg

3.  
700

48s

L
w

EI
9.3018×10-5m 4. The ratio of pedestrian weight to the generalized mass

      1 1700 / M  0.0436

4. K = 1 5. According Equation (19),  1( , , )PS f L =0.8959

5.= 11.5

Peak acceleration a = 0.5092m/s2 a = 0.0391 m/s2

Required
Parameters

natural frequency of structure with frequency
less than 4 Hz and a constant DLF

1 
of 0.257 is

adopted for all frequency. However, as
mentioned in foregoing section, the normal
frequency of walking is about 1.6-2.4 Hz and
DLFs vary remarkably for frequencies up to 5
Hz. It is obvious that the structure with
frequency more than 2.4 Hz may resonate by
the second harmonic. Therefore, the DLF

1
 of

0.257 used for the first harmonic may be not
appropriate for the second or higher
harmonics, otherwise, it will overestimate the
structural response as the DLFs of higher
harmonic such as DLF

2
, are much smaller than

DLF
1
, which can be seen from Table 1. Even a

reduction factor 0.7 is introduced in calculating
response of structure with frequency of 5 Hz, it
still will overestimate the response significantly,
which can be demonstrated by some other

cases as shown in Table 8. In the Table 8, case

2 is the case above. In Case 1, 3 and 4, the

structures have the same setup as case 2

except span length of each structure, which is

shown in the Table 8, respectively. It can be

seen that the code overestimates the peak

response of structure with frequency more than

2.4 Hz remarkably and underestimate the peak

response of structure with frequency less than

2.4 Hz a little, which is consistent with the

results obtained by Pimentel et al. Therefore,

it should be cautious when using the formula

provided by these two codes to estimate the

acceleration response of structure with

frequency more than 2.5 Hz and some

corrections are required to provide a more

accurate prediction of structural acceleration

response induced by vertical walking loads.
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CONCLUSION
UD method is introduced to avoid using Monte

Carlo method to generate lots of random

samples and to improve the efficiency of

solving this type of issue. Then acceleration

response spectra with 95% percentile are

obtained by reliability analysis based on

response surface constructed by only a few

representative simples of pedestrian loads

defined by UD and the corresponding

structural responses calculated by dynamic

analysis. The Monte Carlo simulation validates

the method has enough precision. It can be

seen that this calculation system based on UD

reduces the calculative work significantly and

provides a method to simplify the probabilistic

dynamic response analysis of structure under

random incitement.

Once the structure parameters such as f
st

and M
1
 are given, the structural peak

acceleration response could be calculated in

a rather simple way by suing the general

equations of peak acceleration response

spectra in the paper rather than by time-

consuming dynamic calculation, which is of

practical application.

The case study shows that compare to the
results calculated by the proposed method, the
formulas in BS 5400-2:2006 and Canadian
Highway Bridge Design Code provide a
considerable overestimate of the peak
acceleration of structure with frequency more
than 2.5 Hz and using them to obtain
responses of these structures should be
cautious.

And for some structures with complicated
shape, as long as the some dynamic
characteristics such as frequency and mode
shape could be determined, and the
probabilistic structural acceleration response
could be calculated by the proposed method
based on UD and RSM.
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