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Abstract—Healthy road networks are essential to facilitate 

economic and social development. Sustaining the integrity of 

road pavement necessitates having reliable performance 

models. Such performance models can facilitate evaluating 

the effect of different physical, environmental, and 

operational factors on road pavement performance. Hence, 

this research adopts multiple Machine Learning (ML) 

algorithms to model the impact of these factors on a  

composite Pavement Condition Rating (PCR). The PCR is 

developed using three indicators, namely cracking, rutting, 

and the International Roughness Index (IRI). This study 

investigates the implementation of some widely 

acknowledged ML algorithms, including Artificial Neural 

Networks, Support Vector Machines, and Bagged Regression 

Trees to model road pavement performance. Thus, the 

models are developed and tested using a data set of 302 road 

sections managed by the Nebraska Department of Roads 

(NDOR). Also, the deterioration factors are ranked based on 

their influence on the PCR. Based on the developed models, 

annual daily traffic (ADT), base layer thickness, and age 

affect the pavement condition most.   
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I. INTRODUCTION 

Keeping road pavements in good condition is essential 

to facilitate economic and social development. However, 

this mission is increasingly challenging. For example, 

according to ASCE’s 2021 Report Card for America’s 

Infra-structure, about 42% of the roads in the United States 

of America (USA)  are in poor or mediocre condition [1]. 

Maintaining the integrity of road pavement is challenging 

due to the gigantic volume of road networks, the 

progressive deterioration, as well as budget limitations [2]. 

Nowadays, road networks are magnificent in size. In the 

United States of America (USA) alone, the size of the 

existing public roads exceeds 4 million miles. With these 

vast road networks, it is difficult to cap the degradation of 

road pavements due to the accelerated growth in traffic 

volume and climate change. Recently, climate change has 

exacerbated the environmental impact as extreme 

environmental events become more frequent [3]. 

Moreover, budgetary constraints induced new challenges 
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for highway agencies. These constraints force them to 

defer some maintenance activities and necessitate a 

balance between current and future needs. This makes it 

essential for highway agencies to do more with fewer 

funds. In some instances, budget constraints imply 

deferring the maintenance of some roads and forcing 

decision-makers to prioritize the treatment of some roads 

over others [1]. Thus, it is essential to manage road 

pavement assets effectively and professionally.  

Increasingly, highway agencies around the world are 

managing roads more systematically by adopting 

Pavement Management Systems (PMS). According to 

AASHTO, PMS comprises a set of tools and processes to 

assist decision-makers in systematically monitoring, 

evaluating, analyzing, and planning to preserve road 

pavements in a serviceable condition over time [4]. 

Pavement performance modelling is one of the main pillars 

of PMS [5].  

Thus, modeling road performance is vital for decision-

makers’ estimation of the future condition of roads [2]. 

The combined effect of environmental and traffic-related 

factors, as well as age, causes several types of destresses 

that deteriorate the pavement condition [6]. Pavement 

performance models are used to investigate the 

degradation process and anticipate future pavement 

conditions. In addition, they primarily link pavement 

performance with the key influential factors, including 

material, design, and environment variables [7]. 

Commonly, pavement performance models can be 

categorized into three fundamental types: empirical, 

mechanistic, and mechanistic-empirical [8]. In comparison 

with other models, empirical models are the most 

commonly used models in pavement management. 

Empirical models mainly rely on observed data to link 

different influential factors to pavement performance [9].  

Different models have been developed to model the 

performance of the road pavements and predict the shifts 

in the distresses, individual condition indices, and 

composite condition indices [4]. Tabatabaee et al. [10] 

utilized recurrent neural networks and support vector 

classifiers to model pavement performance. Wang et al. 

[11] estimated pavement fatigue failure time using survival 

analysis. Zhang & Damnjanović [12] and Han et al. [13] 
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integrated the method of moments with reliability theory 

to model pavement deterioration. Later, pavement 

deterioration modeling employed machine learning 

models. Thus, Gajewski & Sadowski [14] integrated 

artificial neural networks (ANN) with the finite element 

method to model crack propagation in pavement asphalt 

layers. Similarly, Kirbaş & Karaşahin [15] created ANN 

performance models to model the deterioration of asphalt 

road sections. More recently, with the availability of big 

data and effective computers, deep learning models have 

become more common for pavement performance 

modeling. For example, Choi and Do [16] used LSTM to 

develop a pavement deterioration model. The developed 

models predict the upcoming year's pavement condition 

for different sections based on the historical data collected 

in the past years. 

Pavement performance is often complex and dynamic. 

Thus, the models are required to be renovated frequently 

to include any possible changes [8]. Therefore, developing 

reliable and updated performance modeling facilitates 

better maintenance planning to optimize the construction 

material selection, treatment type, and treatment time. 

[2,4]. Thus, it is useful to model the relationship between 

a performance index with different factors that might 

affect the performance of road pavements, including age, 

physical factors (asphalt and base layer thickness), 

environmental factors (air and pavement temperature), and 

operational factors (ADT). This study aims to develop 

multiple pavement performance models considering 

pavement age as well as multiple physical, environmental, 

and operational factors to predict the PCR values of road 

pavement. PCR is calculated based on three asphalt 

condition criteria: IRI, rutting, and cracking. Finally, the 

importance of the used factors is assessed using the 

developed pavement performance models.  

II. METHODOLOGY  

The present research study intends to develop reliable 

road performance models using ML. In this regard, a set of 

deterioration factors with a potential impact on road 

performance are identified. This includes age, 

environmental factors (air temperature and pavement 

temperature), physical factors (base layer depth and 

surface layer depth), and operational factors (average daily 

traffic). Subsequently, road performance models are 

developed to establish a relationship between PCR values 

and age, physical, environmental, and operational factors. 

PCR is developed using an integrated approach based on 

AHP-MAUT-Monte Carlo simulation. It is developed 

based on questionnaire data collected by Tabara [17]. The 

developed index of PCR is a composite pavement index of 

10 points scale. The lowest PCR value of zero indicates the 

worst performance, whereas the highest PCR value of ten 

indicates the best performance. The framework of models 

development is depicted in Fig. 1. Thus, the first step 

comprises building a database of PCR values and six 

factors of age, air temperature, pavement temperature, 

asphalt layer thickness, base layer thickness, and ADT for 

302 road pavement sections. Data on the six deterioration 

factors as well as IRI, cracking, and rutting values used for 

the calculation of PCR are collected for 302 road pavement 

sections managed by NDOR. 

To develop the performance models, the established 

database is split into two parts using a division ratio of 

80:20. The bigger division of 242 sections is used for 

model development. However, the data from the remaining 

60 sections are used to validate the models. Finally, the 

developed models are established and subsequently used 

to analyze the influence of the six factors on pavement 

performance. 

A set of widely recognized ML algorithms is exploited 

to predict the performance condition of roads based on the 

six investigated factors. As shown in Fig. 2, three types of 

algorithms of tree-based, regression-based, and neural 

network based are used. These algorithms include three 

regression-tree-based algorithms (Regression Tree (RT), 

Bagged Regression Trees (BaRG), and Boosted 

Regression Tree (BoRT)), two artificial neural network-

based algorithms (ANN,  and Long Short-Term Memory 

(LSTM)), as well as Gaussian Process Regression (GPR), 

and Support Vector Machine (SVM). Their performances 

are analyzed by capitalizing on the evaluation indicators of 

mean absolute error (MAE), mean absolute percentage 

error (MAPE), and root mean squared percentage error 

(RMSPE). The ANN model is selected to optimize the 

hyperparameters of layers and node numbers. In addition, 

the importance of the input-related deterioration factors is 

evaluated by comparing their relative importance weights 

in the developed models. 

 

Figure 1. Research methodology. 

155

International Journal of Structural and Civil Engineering Research Vol. 12, No. 4, November 2023



III.  RESULTS AND ANALYSIS 

Establishing relationships between the calculated PCR 

and factors that describe the roads’ physical, 

environmental, and operational aspects is useful in 

different ways. First, it is helpful to understand the effect 

of various factors on roads condition. Second, it facilitates 

forecasting roads condition over time to establish reliable 

deterioration models. Finally, it is helpful to improve 

material selection and essential for strategic planning.  

Data collected from 302 road pavement sections are 

used for modeling and validating the performance model. 

The collected data constitute six factors: two 

environmental factors of air temperature and pavement 

temperature, two physical factors of surface layer 

thickness and base layer thickness, as well as the age and 

the operational factor of ADT. Various algorithms are 

explored to develop reliable pavement performance 

models. The model development process is performed in 

the MATLAB environment. The model development 

process constitutes two stages of modeling and validation. 

Thus, the collected data are divided into two groups of 

modeling and validation. 80% of the data are used for 

modeling, whereas the remaining 20% of the data are used 

for validation. Cross-validation of five folds is adopted to 

develop the models in order to avoid overfitting. The 

performance of the developed models is evaluated using 

three performance metrics, namely Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), and 

Root Means Square Percentage Error (RMSPE). The 

performance of the models is measured against the two 

data sets of modeling and validation. 

 

Figure 2. Road performance modeling. 

Table I presents the measured performance of the 

developed models against the modeling data set. Among 

the regression tree-based models, RT performs the best. 

The MAE, MAPE, and RMSPE values are measured as 

0.686, 12.86%, and 21.85%, respectively. LSTM performs 

significantly better compared to the ANN, achieving MAE, 

MAPE, and RMSPE of 0.591, 11.26%, and 16.49%, 

respectively. SVM achieves the lowest MAE and MAPE 

of 0.484 and 11.24%, respectively. Overall, SVM and 

LSTM show the best performance when tested against the 

modeling data set.  

TABLE I. PERFORMANCE OF THE DEVELOPED ML MODELS AGAINST 

THE MODELING DATA SET. 

Model MAE MAPE RMSPE 

RT 0.686 12.86% 21.85% 

BaRG 0.869 16.78% 24.27% 
BoRT 0.809 15.70% 23.46% 

ANN 1.013 18.34% 25.51% 

LSTM 0.591 11.26% 16.49% 
GPR 0.732 13.89% 22.21% 

SVM 0.484 11.24% 29.24% 

Table II presents the performance metrics values for the 

different models against the validation data set. The 

obtained results indicate that the BaRG, BoRT, and ANN 

models perform best on the three metrics when tested 

against the validation data set. The three models achieve 

the least performance loss when tested on the validation 

data set compared to the modeling data set. On the contrary, 

the performance of the LSTM and SVM significantly 

decreases when tested against the validation data set 

compared to the modeling data set. For example, the MAE 

measured for the LSTM increases from 0.591 to 1.301 

when tested against the modeling data set and the 

validation data set, respectively. 

TABLE II. PERFORMANCE OF THE PAVEMENT PERFORMANCE 

MODELING AGAINST THE VALIDATION DATA SET. 

Model MAE MAPE RMSPE 

RT 1.436 22.23% 30.05% 

BaRG 1.096 17.72% 25.61% 

BoRT 1.094 17.62% 25.71% 
ANN 1.079 17.88% 25.71% 

LSTM 1.301 22.78% 32.15% 

GPR 1.160 18.37% 25.93% 
SVM 1.275 20.49% 27.53% 

Since the ANN model yields the lowest MAE value, it 

is selected to conduct further investigations. Manual 

tuning of some hyperparameters of ANN is carried out to 

boost its prediction performance. The optimization process 
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is addressed on the basis of the number and size of hidden 

layers. In this regard, different typologies of ANN are 

proposed, studied, and evaluated (see Table III). Fig. 3 

demonstrates the inputs and outputs of the ANN model. In 

this context, it is derived that ANN of architecture [6, 3] 

has the lowest prediction error. The MAE, MAPE, and 

RMSPE are 1.05, 17%, and 24%, respectively. This 

architecture of ANN encompasses two hidden layers. The 

first layer is composed of six neurons, and the second 

hidden layer is composed of three neurons. It can also be 

noticed that increasing the number and size of hidden 

layers doesn’t guarantee amplifying the learning capacity 

of ANN. Also, compared to the ANN model developed 

using the default hyperparameters values, optimizing the 

ANN’s topology does not significantly improve the 

model’s accuracy in this study. 

 

Figure 3. Configuration of the best-performing ANN model. 

 

TABLE III. PERFORMANCE OF THE DIFFERENT ANN MODELS. 

Model architecture MAE MAPE RMSPE 

1 1.19 19% 27% 

3 1.13 18% 26% 

6 1.27 21% 28% 

12 1.81 29% 36% 

[3,1] 1.08 18% 22% 

[3,3] 1.09 18% 25% 

[6,1] 1.14 18% 25% 

[6,3] 1.05 17% 24% 

[6,6] 1.26 21% 30% 

[12,1] 1.22 19% 27% 

[12,3] 1.12 18% 25% 

[12,6] 1.12 19% 27% 

[12,12] 1.13 19% 27% 

[3,3,1] 1.27 23% 31% 

[3,3,3] 1.23 20% 28% 

[6,3,1] 1.22 20% 27% 

[6,6,1] 1.22 20% 28% 

[6,6,6] 1.11 18% 26% 

[12,6,1] 1.09 18% 26% 

[12,6,3] 1.55 24% 33% 

[12,12,12] 1.24 20% 27% 

[3,3,3,3] 1.30 21% 28% 

[6,6,6,6] 1.13 18% 26% 

[12,12,12,12] 1.28 20% 27% 

The performance of the ANN model with the optimized 

architecture is compared against the training and validation 

data sets. Fig. 4 compares the actual and predicted PCR 

values for the (a) training data set and the (b) validation 

data set. Fig. 5 demonstrates the error histogram of the 

optimized ANN. Figs. 4 and 5 indicate that the ANN 

model achieves a promising accuracy. It is interpreted that 

more than 60% of the PCR values are predicted with an 

absolute error of less than 1 in both modeling and 

validation data sets. In addition, a low proportion of the 

modeling and validation data sets (approximately 14% and 

18%, respectively) has a prediction error larger than 2. 

This evinces the high learning ability of the ANN model.  

  
(a) (b) 

Figure 4. Comparison between actual and predicted PCR using the optimized ANN model for (a) training data set and (b) validation data set. 
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(a) (b) 

Figure 5. Histogram of the absolute error of the optimized ANN model tested on (a) training data set and (b) validation data set. 

The importance of the factors used for the models’ 

development is evaluated to understand their significance 

on pavement performance. Thus, the factors’ importance 

is normalized to allow for the comparison of their 

significance in the different models. As shown in Table IV, 

ADT appears to be of paramount importance in five out of 

six models. The relative importance of ADT is between 

16.70% and 40.00%. For the SVM model, pavement age 

arose to have a significantly high relative importance with 

a value of more than 50%. Also, the average relative 

importance of the different factors is calculated. As 

presented in Table IV, ADT, base layer thickness, and age 

appear to have the highest average relative importance 

among the six factors used. In contrast, surface layer 

thickness, pavement temperature, and air temperature 

appear to have a relatively lower impact on pavement 

performance. 

TABLE IV. NORMALIZED IMPORTANCE OF THE DIFFERENT FACTORS. 

Model Air temperature 
Pavement 

temperature 
Pavement age Surface layer thickness 

Base layer 

thickness 
ADT 

RT 1.40% 2.70% 8.70% 16.50% 30.70% 40.00% 

BaRG 15.90% 12.50% 13.40% 10.80% 21.10% 26.30% 

BoRT 22.60% 8.90% 12.50% 0.00% 22.60% 33.30% 

ANN 11.22% 7.32% 20.66% 7.82% 24.64% 28.32% 

GPR 16.20% 12.50% 15.20% 11.80% 18.90% 25.30% 

NCA 0.00% 0.00% 53.50% 0.00% 29.90% 16.70% 

Average 11.22% 7.32% 20.66% 7.82% 24.64% 28.32% 

IV. CONCLUSIONS 

Multiple machine-learning algorithms are utilized to 

model road pavement performance. The collected data 

from the 302 sections along with the calculated PCR 

values, are used for the models’ development and 

validation. Models’ validation results indicate that BaRG, 

BoRT, and ANN models perform the best among the tested 

seven models. Optimizing the number of layers and nodes 

in the ANN model yields the best architecture with two 

layers of six and three neurons. Also, it is concluded that 

Annual Daily Traffic (ADT), base layer thickness, and age 

have the greatest impact on the pavement condition. The 

developed models can facilitate cost-effective 

maintenance intervention policies for municipalities and 

transportation agencies by utilizing the relationships 

between the different factors and road performance. 
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