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Abstract—AI-ML-assisted Generative Design (GD) using 

Evolutionary Algorithms (EA) techniques and Topology 

Optimization (TO) has undergone massive growth over the 

past few years. As a result, AI and GD have essential 

applications in many fields, such as Industrial & Product 

Design, Medicine, Synthetic Biology, Infrastructure, 

Architecture, Engineering & Construction (AEC). This 

research paper discusses the performance-based workflows 

for AI-ML assisted, cloud computation and EA-driven 

Generative Design with topological optimisation to reduce 

weight and cost. The discussed research is a lightweight real-

world hybrid, awarded 50 m robot 3d-printed 

bluemint®steel bridge design and off-the-shelf steel tube 

prefabrication in Germany, completed in June 2023. [3] The 

generative bridge design with finite element structural 

analysis (FEA) and cloud-driven deep neural network (GNN) 

scenarios will demonstrate the largest 3d-printed Wire-and-

arc Additive Manufacturing (WAAM) pedestrian/bicycle 

bridge inspired by biology worldwide.   
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I. INTRODUCTION 

A. Location and Criteria for the 80 to 50 m Bridge 

Scenario and Realization Competition 

The assembly location for the bridge is in the Rhine 

estuary area of the small Emscher river. It is still an area 

of inaccessible post-industrial land to the general public, 

with sealed-off brownfield areas. The overall public park 

design includes the regeneration of the estuary remnants 

of the industrial era to provide a public, accessible future 

park location. A competition was held for an 80 to 50 m 

connection bridge structure, of which the author’s team 

from Miami-Berlin won the commission. Many land 

surveys, lidar surveys for the WWII bombs, and 

inventories of existing plants and animals, along with an 

analysis of the impact on the environment, were 

undertaken over two years. Due to the diverse soil, 

hydrologic, and multiple bridge structure loading 

conditions, a lightweight material-reducing micropile 
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foundation with three micro pylons was designed beyond 

the sensible existing tree root zone. These considerations 

had the benefit of making prefabricated bridge modules 

portable for transportation, assembling them using small 

machines, with a helicopter flying from the barge on the 

Rhine, as shown in Fig. 1.   

 

 

Figure 1. Site view of the park (left), digital twin for the bridge 
(middle), and assembly location. Source: ©Thomas Spiegelhalter.  

II. METHODS 

A. AI-ML-assisted Topology Optimization and 

Generative Design with Graph Neural Networks 

Topology Optimisation (TO) has been around for 20 

years but is not a Generative Design. TO usually starts 

from a single, fully-formed, human-biased, design-cad 

template concept, with loads and constraints applied 

according to project requirements [1]. TO only outputs an 

optimized concept to evaluate from a human-designed 

model [2]. There is no automated generation of ideas. 

Finally, it returns an optimized, man-made result of the 

mesh model that needs to be recreated within a CAD 

system intended for downstream usage. Generative Design 

(GD) is a cloud-based, artificial intelligence-enabled 

modelling-driven design method using GA/EA algorithms 

to generate high-performance geometries from users’ 

defined engineering requirements [3]. It has excelled in 

available cloud subscriptions since 2018. The GD for the 

bridge competition starts with designing preserved areas, 
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transition zones, loads, and constraints according to design 

requirements. AI, rather than humans, defines topological 

cloud design results created for later evaluation. 

Furthermore, setting performance parameters and 

materials components was automated with text-based 

guidance using a Graph Neural Network (CNN) over data 

described with Graphs within the non-Euclidean design 

space [4, 5]. Several Generative Designs (GD) tools are 

commercially available in design and engineering, 

including Altair’s OptiStruct, Dassault Systemes CATIA 

V6, SolidWorks, Bentley, Autodesk’s Revit-Dynamo 

Studio, InventorPro, Fusion360, Nastran, Netfabb Shape 

Generator, Grasshopper-Rhino, and Siemens NX 

SolidEdge-Frustum. But only Autodesk GDs work fully 

integrated with the cloud-based storage that supports the 

AI; other brands still work only locally, as limited 

versions. The Evolutionary Algorithm (EA) for the most 

natural-looking growing-like design and the Genetic 

Algorithm (GA) were tested and compared in iterations of 

generative bridge designs. 

 

Figure 2. AI-assisted Generative Design Cloud, Iterative Feedback 

Loops, and Topological Optimization for Additive Manufacturing 
Flowchart. Source: ©Thomas Spiegelhalter, 2022.  

B. Algorithms and ML for the Generative Design 

Iterations of the Bridge Competition and Realization 

An Evolutionary Algorithm (EA) is an algorithm that 

uses natural mechanisms and solves problems by 

processes that mimic living organisms’
 
behavior. EAs are 

components of both evolutionary computation and 

bioinspired computation. Genetic Algorithms (GA) are 

methods of solving constrained and unconstrained 

optimization problems based on natural selection, a 

process driving biological evolution. The GA 

automatically tweaks the population of single solutions 

over hundreds of cloud-computing FEA iterations and 

ideas. In cautious terms, artificially intelligent generative 

design is the next frontier of design and engineering 

product development, as it reverses the paradigm for 

creating and evaluating a projects
 

design performance 

using artificially intelligent, human-free scripted 

experiments, rapidly integrated production results, 

materials results, and cost comparisons, as well as 

assembly strategies. Furthermore, GA is a common 

example of a meta-heuristic search algorithm that can 

examine the parameters model of the black box to discover 

the best-performing design according to several 

objectives. (6). The GA is used during the early stage of 

the design process, autonomously creating hundreds of 

designs according to performance-based parameters 

inputs, materials, and production types to lower the weight 

and production costs. The integrated decision-making also 

drives the aesthetics through a cloud-modelling of the 

CAD results that can be edited, highlighting organic 

growing patterns and lightweight architecture (7). Chapter 

D describes the methods for prefabricated off-the-shelf 

components and robot-assisted 3D printing, such as Wire-

Arc Additive Manufacturing (WAAM) or laser powder 

bed printing. 

III.  RESULTS OF METHODS  1–8,  ITERATIONS AND 

VALIDATIONS  

For this experimental bridge design, Autodesk robot-

assisted Structural Analysis, InventorPro, Netfabb, 

Nastran, CFD Ultimate, ANSYS, and a Fusion360 cloud 

subscription were used, together with SIEMENS NX and 

the stand-alone RFEM Dlubal 3D finite element analysis 

software (Figs. 2–5). Each experimental GD workflow 

consisted of multiple criteria entry steps depending on the 

difficulty in setting up a GD workspace for AI-ML-

assisted cloud computing. The setup involved running a 

cloud-based GD search multiple times, with hundreds of 

outcomes. The first bridge design showed a growth-

looking 80-meter-long arching bridge topology. The 

geometry was based on a starter shape geometry, with a 

primary structure over a preserved bridge deck geometry. 

The winning submission in the contest’s third bridge 

design focused on different parametric inputs for load 

distribution from the 50-meter-long main structure below 

the preserved bridge geometry and the circulation decks 

via seven micro-piles over the river estuary.  

 
Figure 3. Autodesk Robotic Structural Analysis as a Euclidean standard 

design solution. Source: ©Thomas Spiegelhalter, 2021. 

 
Figure 4. Autodesk InventorPro/Fusion360 Generative Design with 

organic experimental GA/EA workflows and Dynamo Scripting to 
topologically optimize the weight and material choices for fabrication. 
Source: ©Thomas Spiegelhalter, 2021. 
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Figure 5. Autodesk Fusion360 Generative Design with organic 

experimental GA/EA workflows and Dynamo Scripting to topologically 
optimize the weight and material choices for fabrication. Renderings in 
Revit-BIM Vers. 2022. Source: ©Thomas Spiegelhalter. 

A. Methods 1–2: Design Space, Geometry 

Optimizations, Load Iterations, and Validations 

This time, the preserved geometry with boundaries (the 

keep in’s) stayed in the final modelling space of the 

starting shape (such as nodes and connection points 

between tubes and pylons) under the preserved geometry, 

and the scaled obstacle geometry with the constraints (the 

keep-outs, clearances). The concrete abutments and 

micropile foundations were separately computed with 

other FEA software to calibrate and merge the results into 

the shared cloud Masterfile. The next step included coding 

all the relevant structural design conditions and load types 

based on Eurocode 3 (EN 1993/EC 3). The GD-model 

settings include the following: Self-weight (0.5 kN/m2 and 

78.5 kN/m3), vertical and horizontal payloads (5.0 kN/m2), 

structural Buckling, nonlinear Stress, and dynamic loads 

such as modal frequency quasi-static event simulation, 

dynamic event simulation, wind load, water load, impact 

loads, and thermal stress loads [8], as shown in Fig. 4–7.  

 

 

 

Figure 6. Autodesk InventorPro/Fusion360 Generative Design space, 

constraints, obstacles, offsets, with genetic and evolutionary Algorithms 
(GA/EA) and Dynamo Scripting. Source: ©Thomas Spiegelhalter, 2022. 

B. Methods 3-8, Iterations and Validations 

One of the early intentions was to 3d-print the entire 

award-winning bridge in stainless steel (SS 308Lsi). 

Printing the whole structure would take about 11,630 

hours for a WAAM 3D printing or about 2,080 hours for 

printing using more than six Kuka robots. Additionally, it 

would need 3,488kg of spent wires, X number of gas tanks 

with protection, and 58.147kWh electricity, all costing 

around 1,3 Mio. Euros before taxes (including delivery), 

not including the cost of the project design and planning, 

permitted simulation tests, and other license fees. 

Moreover, tying green park schedules with the schedules 

for several other integrated construction processes in just 

months made waiting more than one year to have steel 

bridges printed impossible. The initial desire to only 

robotically print a world-large steel bridge was rapidly 

scaled back towards more economically feasible designs. 

The decision evolved towards striving for a hybrid design 

with a balanced mixture of prefabricated steel tubes and 

3D-printed nodes and posts for handrails to preserve the 

organic growing aesthetic of the final lightweight bridge 

design. Within FEA and RFEM structural fitness 

iterations, pylons were reduced from seven to just three. 

The initially uncentred growth nodes in hollow tubes were 

centered, drastically reducing printing costs. The resulting 

price inquiries and bidding showed a 225% cost reduction. 

Other challenges include combining data from the additive 

manufacturers for their various robot G-codes to handle 

the interference with little cleaning up of files and coding 

the machine’s paths. All computational workflows for the 

Autodesk simulation mechanical/multiphysics were based 

on Autodesk simulation Accuracy Verification Examples 

(AVEs) from NAFEMS USA Benchmark publications [8–

10]. 

 
 

 

 

Figure 7. Autodesk InventorPro-Nastran and RFEM Dlubal structural 
analysis of the non-centred 3d-printed components with fitness tests and 
optimisations. Source: ©Thomas Spiegelhalter and M. Pfeifer. 2002. 
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Figure 8. Autodesk InventorPro/Fusion360 Topological Optimizations 
(TO) of the nodes and entire geometry, with RFEM tests in Dlubal and  
Dynamo-Grasshopper. Source: ©Thomas Spiegelhalter, 2022. 

C. Artificial Intelligence, Aesthetics Constraints and 

Workflow Validations 

Once a final geometry was chosen, with all steel tubes 

centred on the nodes, and analyzed further using 

topological optimization (to), it was evident that an 

organic aesthetic was most attractive with the steel tubes 

not centered on the nodes. Typically, following the 

stochastic process relies on sampling from a finite number 

of designs in the GD space. In this context, it is also 

important to point out that GA-based workflows with 

metrics and EA cannot capture the human perception of 

the bridge aesthetics. These aspects, like the beauty, 

cannot be quantified, so they must be considered manually 

after a GD is completed and geometry exported for further 

processing. The original GD and optimized models,  

 

 
Figure 9. Autodesk InventorPro/Fusion360 perspectives and renderings 
in Autodesk Revit, Maya and Alias. Source: ©Thomas Spiegelhalter, 
2022. 

Which have organic growing-like non-centred 

geometry, are less performant and heavier than models 

with centring geometry. The end-iteration process 

included many 1:1 ZOOM workshop sessions on software 

with the additive manufacturers discussing robotic G-

codes and WAAM or laser print capabilities. Then, the 

German Institute of Steel phase for approvals towards EU-

code compliance and permits required further elaboration, 

as shown in Figs. 8–9. 

 

 
Figure 10. Autodesk InventorPro/Fusion360 perspectives and renderings 
in Autodesk Alias and V-Ray.  Source: ©Thomas Spiegelhalter, 2022. 

IV.  CONCLUSION & FUTURE WORK 

This research-led realization project demonstrates an 

innovative AI-assisted computational design approach 

with deep neural networks that combine bottom-up 

evolutionary agents-based geometry models for growth 

processes found in natural systems with top-down genetic 

algorithms for optimisation. The many iterations with 

different software applications of these methods to 

designing a unique steel bridge using optimized 3-D robot 

WAAM, Laser Printing, and BlueMint() additive 

manufacturing processes paid off. The finding was clear 

by performing eight iterations with hundreds of cloud 

scenarios over four different selected design models for 

further optimisations:  The purely organic growing non-

centred geometries were aesthetically more convincing. 

But in contrast, the multiphysics iterations optimized the 

configurations in real-world settings to achieve an 

economical and sustainable mixed additive manufacturing 

process. As a result, the weight of the hybrid bridge made 

from a balanced mix of 3D printing and prefabricated steel 

was reduced dramatically, helping minimize overall 

production costs. Finally, the developed hybrid 

computational methods suggest further studies on 

developing other generative EA workflows with 

naturalistic deep neural networks using deep GNNs. These 

could expand evolutionary computing capabilities, 

excelling higher-performance production solutions and 

reducing costs. 
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