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Abstract—Maximum Residual Inter-story Drift Ratio 

(RIDRmax) plays an important role to specify the state of a 

structure after severe earthquake and the possibility of 

repairing the structure. Therefore, it is necessary to predict 

the RIDRmax of Steel Moment-Resisting Frames (SMRFs) 

with high reliability by employing powerful Intensity 

Measures (IMs). This study investigates the efficiency and 

sufficiency of scalar-valued IMs for predicting RIDRmax of 

two sets of the 3-Story, 6-Story, and 9-Story SMRFs with 

and without using linear Fluid Viscous Dampers (FVDs). 

Incremental Dynamic Analysis (IDA) was performed with 

considering RIDRmax as engineering demand parameters 

using Opensees. Results of analysis showed that two scalar-

valued IMs of IMM(α=0.5 ) and Saavg M-D had lower values of 

the variations of standard deviation of natural logarithm of 

IM of RIDRmax, σlnIMRD, which shows the efficiency of these 

IMs. Moreover, these scalar-valued IMs achieved higher p-

values with respect to seismic ground motion features of M, 

R, and Vs30, which shows the sufficiency of assumed IMs. 

Therefore, two scalar-valued IMs of IMM(α=0.5) and Saavg M-

D are proposed as optimal scalar-valued IMs for predicting 

the RIDRmax of SMRFs.   

 

Keywords—scalar-valued intensity measure, residual drift, 

spectral shape, fluid viscous damper, incremental dynamic 

analysis 

 

I. INTRODUCTION 

Reliable design of structures against natural hazards 

such as earthquakes requires fully understanding the 

influence of seismic parameters on the structural behavior 

[1-5]. Hence, it is vital to identify ground motion 

properties, which are referred to as Intensity Measures 

(IMs), to assess the seismic response of buildings. The 

IMs are used to quantify the severity of a seismic event 

and uncertainty of them using one parameter or a vector 

of a few parameters. These parameters are related to a set 

of well-selected ground motion records. Efficiency, 

which is the most important characteristic of an IM, 

means good explanatory power of the IM regarding 
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Engineering Demand Parameter (EDP) to reduce the 

number of records of analysis under given accuracy. 

While sufficiency means the ability of the IM for 

predicting the response of structure independent from 

other record properties. Therefore, an appropriate IM 

should satisfy the properties of efficiency and sufficiency 

[6-8]. In general, IMs are divided into two groups of 

scalar-valued and vector-valued IMs according to the 

dimension of parameters (e.g., see [9, 10]). Scalar-valued 

IMs imply the relationship between IM and EDP in a 

two-dimensional coordinate system using one parameter. 

Within the past years, numerous research studies 

comprehensively investigated the scalar-valued IMs, the 

peak ground acceleration (PGA), and elastic spectral 

acceleration (Sa) at the fundamental period of a structure, 

denoted as T1, were introduced as the most-used scalar 

IMs [11-14]. Recent seismic events have demonstrated 

that some damaged buildings may need to be demolished 

due to excessive permanent lateral deformations at the 

end of the earthquake, even without suffering total 

collapse or severe damages. Therefore, maximum 

Residual Inter-story Drift Ratio (RIDRmax) at all story 

levels or roof play a crucial role in defining the seismic 

performance of the structure, determining the feasibility 

of retrofitting damaged structure as well as estimating the 

structural residual capacity [15, 16]. Therefore, the main 

aim of this study is to investigate the performance of 

scalar-valued IMs to calculate RIDRmax of Steel Moment-

Resisting Frames (SMRFs) with and without using Fluid 

Viscous Dampers (FVDs). Thereby, this study proposes 

three “optimal” scalar-valued IMs based on the effects of 

spectral shape and ground motion duration for predicting 

RIDRmax of the framed steel structures within a certain 

confidence level. 

II. SCALAR-VALUED INTENSITY MEASURE 

The scalar-valued IMs can be categorized into two 

groups as structure-specific IMs and non-structure-

specific IMs including 12 and 13 IMs, respectively (see 

Tables I and II [7]). In this study, structure-specific IMs 

are further categorized into three groups as spectral, 
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spectral shape-based and combined spectral shape-based 

and duration-based. Similarly, non-structure-specific IMs 

are also classified into three sets as acceleration-related 

(including five IMs), velocity-related (including five IMs) 

and displacement-related (including three IMs). It is 

worth noting here that structure-specific IMs, employed 

in this study, are calculated from the response of the 

spectral components of a ground motion record assuming 

5% damping value. Whereas, non-structure-specific IMs 

are obtained from the ground-motion time histories 

(further information can be found in [7]). Based on the 

literature review, Tables I and II present scalar-valued 

IMs that were used in this study. 

TABLE I.  NON-STRUCTURE-SPECIFIC SCALAR-VALUED IMS 

Notation  Name Definition 

Acceleration-related scalar-valued IMs 

PGA Peak Ground 

Acceleration 
PGA=max a(t)

 

AI Arias 

Intensity 
2

0
AI= ( ) ,  t

2

ft

fa t dt totalduration
g


=

 
IC Characteristic 

Intensity 
2

1.5 0.5 2

1

2 1

1
IC=(a ) . ,  a ( ) ,  

t

rms d rms
t

d

d

t a t dt
t

t t t

=

= −

  

Ia Compound 

Acceleration 

IM 

1/3IA=PGA. dt  

CAV Cumulative 

Absolute 

Velocity 
0

CAV= ( )  
ft

a t dt  

Velocity-related scalar-valued IMs 

PGV Peak Ground 

Velocity 
PGV=max v(t)

 

FI Fajfar 

Intensity 

0.25FI=PGV. dt  

IV Compound 

Velocity IM 

2/3 1/3I =PGV .v dt  

CAD Cumulative 

Absolute 

Displacement 
0

CAD= ( )  
ft

v t dt  

SED Specific 

Energy 

Density 

2

0
SED= ( )

ft

v t dt  

Displacement-related scalar-valued IMs 

PGD Peak Ground 

Displacement 
PGD=max d(t)

 

Id Compound 

Displacement 

IM 

1/3I =PGD.d dt  

CAI Cumulative 

Absolute 

Impulse 
0

CAI= ( )  
ft

d t dt  

TABLE II.  STRUCTURE-SPECIFIC SCALAR-VALUED IMS 

Notation  Name Definition 

Spectral and spectral-shaped scalar-valued IMs 

Sa(T1) Spectral 

Acceleration 

at T1 

 

ASI Acceleration 

Spectrum 

Intensity 

0.5

0.1
ASI= ( ,5%)Sa T dt  

SI Spectrum 

Intensity 

2.5

0.1
SI= ( ,5%)Sv T dt  

DSI Displacement 

Spectrum 

Intensity 

5

2
DSI= ( ,5%)Sd T dt  

IMC  0.5

C 1 2 1 2 1IM =S ( ).(S ( ) / S ( )) ,  2a a aT T T T T=
 

IMM  0.5

1 2 1 2 1IM =S ( ).(S ( ) / S ( )) ,  

0.5  0.3

M a a aT T T T R T

or





=

=  
INP  0.4

NP 1 1 1I =Sa( ). , NP=Sa ( ... ) / S ( )avg N aT NP T T T
 

Saavg  1/

1 1 1 1

1

1

Sa =Sa ( ... ) Sa( )

0.2, 3

N
N

avg avg N i

i

N

C T C T C T

C C

=

 
=  

 

= =



 
Combined spectral duration and shape scalar-valued IMs 

IMM-D  
1 1 1IM =S ( ).(S ( ) / S ( )) .m

M D a a a dT R T T t 

−  
INP M-D  

NP 1 1 1

1

I =S ( ).(Sa ( ... ) / S ( )) .n

M D avg N a d

N

a T T T T t

T R T





−

=
 

Saavg M-D  
1 1 1Sa =Sa ( ... ). ,avg M D avg N d NC T C T t C R 

− =
 

III. STRUCTURAL MODELING 

In order to investigate efficiency and sufficiency of 

assumed scalar-valued IMs, two sets of SMRFs were 

considered. The first set includes the 3-, 6-, and 9-Story-

SAC SMRFs that were designed for SAC project [17] and 

the detail of designing process can be found in FEMA 

355C [18]. Fig. 1 depicts the elevation, section and 

arrangement of the FVDs on 3-, 6- and 9-Story-SAC 

SMRFs. The second set includes the 3-, 6-, and 9-Story-

Ref SMRFs, designed by Kazemi et al. [19, 20] according 

to ASCE 7-10 [21]. Fig. 2 depicts the elevation, section 

and arrangement of the FVDs on the 3-, 6- and 9-Story-

Ref SMRFs. The FVDs were placed diagonally within 

SMRFs to improve seismic performance of these 

structures. During last decade, many researchers focused 

on the importance of P-Delta effect, and some approaches 

were used to considering the P-Delta effect [see e.g. 1, 13, 

22-25]. 

In this study, it was assumed all columns except those 

in the SMRFs behaves like as a leaning column to 

consider the P-Delta effects. In addition, to improve 

accuracy of modeling in OpenSees [26], deteriorating 

moment-rotation hysteresis according to the Modified 

Ibarra–Krawinkler bilinear-hysteretic model was used for 

beams and columns of the SMRFs. To find out the 

efficiency and sufficiency of proposed scalar-valued IMs, 

the improved SMRFs using linear FVDs were considered. 
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Figure 1.  Dimensions and configuration of the linear FVDs on the 3-, 

6- and 9-Story-SAC SMRFs. 
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Figure 2.  Dimensions and configuration of the linear FVDs on the 3-, 

6- and 9-Story-Ref SMRFs. 
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To model linear FVDs, a uniform vertical distribution 

of damping coefficients were generated assuming a five 

percent Rayleigh damping ratio for the first and third 

modes of structures and supplemental viscous damping 

ratio of 0.15 (ξD=0.15). The supplemental viscous 

damping ratio can be calculated as follows [2, 19, 27]: 

( ) 2 2

1 11

3 2

11

‎ ‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎ ‎‎

8 . .

DN

i i i rii
D Ns

j jj

C T cos

m

   


 

=

=

=



 

(1) 

3 2
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2 2

1 11

.8 . .

‎‎‎ ‎ ‎‎ ‎‎ ‎ ‎‎
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D j jj

D N

i i rii
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C

T cos

  

   

=
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

  

(2) 

where the number of the FVD devices, ND, the damping 

coefficient, Ci, the fundamental period of vibration, T1, 

the number of stories, Ns, the mass of story, mj, the angle 

of damper direction, θi, can be defined based on the 

characteristics of designed SMRFs. In addition, other 

parameters like as the relative deformation between the 

horizontal degrees of freedom at the ends of the FVDs, 

φri1, the first mode component at the top of the story, φj1, 

can be achieved from the models. In order to use a 

uniform vertical distribution of damping coefficients, the 

Equation (2) was rearranged to calculate the damping 

coefficient for all linear FVDs, CD. To perform 

Incremental Dynamic Analysis (IDA), ground motion 

records considered by Jamshidiha et al. [7, 8] were used. 

In addition, four RIDRmax of 0.2%, 0.5%, 1.0%, and 2.0% 

were assumed according to Yahyazadeh et al. [28]. 

IV. INVESTIGATING THE EFFICIENCY OF THE IMS FOR 

RESIDUAL DRIFT PREDICTION  

Achieving the RIDRmax is essential for vulnerability 

assessment of a structure after a severe earthquakes, 

which shows the state of structure and the possibility of 

retrofitting or repairing of the structure. Therefore, it is 

essential to use a powerful IM with high reliability that 

makes the results more realistic. Efficiency is called the 

power of an IM to predict the seismic response (e.g. the 

RIDRmax of SMRFs) with low dispersion. In this section, 

the efficiency of 25 structure-specific and non-structure-

specific scalar-valued IMs presented in Tables I and II 

were investigated. Fig. 3 presents the variations of 

standard deviation of natural logarithm of IM of RIDRmax, 

σlnIMRD, values for scalar-valued IMs in the 3-Story-SAC, 

6-Story-SAC, and 9-Story-SAC SMRFs. It can be seen 

that for predicting the RIDRmax of 0.002 in the 3-Story-

SAC, 6-Story-SAC, and 9-Story-SAC SMRFs, the 

σlnIMRD values for IMM(α=0.5) are equal to 0.25, 0.28, 

and 0.20, respectively, which is lower than other assumed 

scalar-valued IMs. For predicting the RIDRmax of 0.005, 

0.01, and 0.02 in the 3-Story-SAC SMRF, the σlnIMRD 

values for Saavg M-D are equal to 0.31, 0.29, and 0.20, 

respectively. In addition, the σlnIMRD values for Saavg M-D 

in the 6-Story-SAC SMRF are equal to 0.30, 0.25, and 

0.22, respectively, and for the 9-Story-SAC SMRF are 

equal to 0.22, 0.23, and 0.20, respectively. Therefore, two 

scalar-valued IMs of IMM(α=0.5) and Saavg M-D have 

lower σlnIMRD that shows the efficiency of assumed IMs. 

Moreover, these IMs have lower σlnIMRD values in the 3-

Story-SAC, 6-Story-SAC, and 9-Story-SAC SMRFs with 

linear FVDs and can be considered as efficient IMs. 

 

Figure 3.  Variations of σlnIMRD values for scalar-valued IMs in the, a) 
3-Story-SAC, b) 6-Story-SAC, and c) 9-Story-SAC SMRFs. 

Fig. 4 presents the variations of σlnIMRD values for 

scalar-valued IMs in the 3-Story-Ref, 6-Story-Ref, and 9-

Story-Ref SMRFs.  

 

Figure 4.  Variations of σlnIMRD values for scalar-valued IMs in the, a) 
3-Story-Ref, b) 6-Story-Ref, and c) 9-Story-Ref SMRFs. 

It can be seen that for predicting the RIDRmax of 0.002 

in the 3-Story-Ref, 6-Story-Ref, and 9-Story-Ref SMRFs, 

the σlnIMRD values for IMM(α=0.5) are equal to 0.24, 0.19, 

and 0.18, respectively, which is lower than other assumed 

scalar-valued IMs. 

For predicting the RIDRmax of 0.005, 0.01, and 0.02 in 

the 3-Story-Ref SMRF, the σlnIMRD values for Saavg M-D 

are equal to 0.26, 0.23, and 0.23, respectively. In addition, 

the σlnIMRD values for Saavg M-D in the 6-Story-Ref SMRF 

are equal to 0.29, 0.29, and 0.23, respectively, and for the 

9-Story-Ref SMRF are equal to 0.29, 0.30, and 0.23, 

respectively. In addition, IMs of IMM(α=0.5) and Saavg M-D 
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had lower σlnIMRD values assuming linear FVDs. 

Therefore, these two IMs can be considered as efficient 

scalar-valued IMs for predicting RIDRmax of SMRFs with 

and without linear FVDs. Table III presents the Fractional 

Reduction (FR) in the mean dispersion, (σlnIMRD)avg, in 

four optimal scalar-valued IMs. It can be noted that the 

higher values of FR achieved for two IMs of IMM(α=0.5) 

and Saavg M-D. 

TABLE III.  FRACTİONAL REDUCTION (FR) İN (ΣLNIMRD)AVG 

ACHİEVED BY THE PROPOSED SCALAR-VALUED IMS WİTH AND 

WİTHOUT LİNEAR FVDS. 

  Iv IMM(=0.33) IMM(=05) SaavgM-D 
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IM
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F
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 (
%

) 

W
it

h
o
u
t 

F
V

D
 RD=0.2% 0.30 7.98 0.25 22.58 0.23 29.43 0.24 27.89 

RD=0.5% 0.34 22.59 0.34 22.40 0.30 30.69 0.28 35.03 

RD=1% 0.31 30.28 0.33 26.05 0.30 32.93 0.27 39.29 

RD=2% 0.25 35.01 0.26 32.27 0.26 33.52 0.22 42.72 

W
it

h
 F

V
D

 RD=0.2% 0.30 14.33 0.27 22.57 0.24 31.74 0.24 31.81 

RD=0.5% 0.31 27.67 0.33 24.14 0.29 32.25 0.28 34.89 

RD=1% 0.32 29.39 0.35 22.80 0.29 36.51 0.30 34.13 

RD=2% 0.27 36.70 0.30 32.01 0.27 36.63 0.25 42.39 

V. INVESTIGATING THE SUFFICIENCY OF THE IMS FOR 

RESIDUAL DRIFT PREDICTION  

Sufficiency is called the ability of an IM to render the 

seismic response (e.g. the RIDRmax of SMRFs) 

independent from the other characteristics of the seismic 

ground motion records. Therefore, a sufficient IM 

prevents a biased distribution for the seismic response 

(e.g. the RIDRmax of SMRFs) assessed from IDAs. To 

compare the sufficiency of the IMs, the p-value was 

calculated regarding the ground motion characteristics of 

M, R, and Vs30. Table IV presents the percent of 

structures with p-values≥0.05 obtained from investigating 

the sufficiency of proposed scalar-valued IMs with 

respect to M, R, and Vs30.  

TABLE IV.  PERCENT OF STRUCTURES WITH P-VALUES ≥ 0.05 

OBTAINED FROM INVESTIGATING THE SUFFICIENCY OF PROPOSED 

SCALAR-VALUED IMS WITH RESPECT TO M, R, AND VS30. 

 
% of structures with p-
values ≥ 0.05 

 Scalar-valued IM M R Vs30 

Without 
FVD 

Iv 25 100 87.5 

IMM(=0.33) 91.67 91.67 91.52 

IMM(=05) 87.5 100 95.83 

SaavgM-D 95.83 100 91.69 

With 

FVD 

Iv 54.17 100 87.5 

IMM(=0.33) 91.67 100 87.5 

IMM(=05) 95.83 95.83 83.33 

SaavgM-D 79.17 100 91.67 

The results show that two IMs of IMM(α=0.5) and Saavg 

M-D are selected as optimal scalar-valued IMs for 

predicting the RIDRmax of considered SMRFs. Figs. 5 and 

6 present the sufficiency of proposed scalar-valued IMs 

in the assumed RIDRmax and for aforementioned SMRFs 

with respect to seismic characteristics of M, R, and Vs30, 

without and with assuming linear FVDs, respectively.  

 

 

Figure 5.  Sufficiency of proposed scalar-valued IMs in the assumed 

RIDRmax and SMRFs, a) M, b) R, c) Vs30. 

 

Figure 6.  Sufficiency of proposed scalar-valued IMs in the assumed 

RIDRmax and SMRFs with linear FVDs a) M, b) R, c) Vs30. 

It can be seen that two scalar-valued IMs of Iv and 

IMM(α=0.33) in some cases achieved p-values lower than 

0.05 (5%) that shows the insufficiency of these IMs. 

While two IMs of IMM(α=0.5) and Saavg M-D had p-values 

higher than 0.05 in all cases. Therefore, these IMs are 

considered as sufficient IMs with respect to seismic 

characteristics of M, R, and Vs30. 

VI. CONCLUSIONS 

In this study, the efficiency and sufficiency of 25 

scalar-valued IMs including non-structure-specific IMs 

and structure-specific IMs were selected to predict the 

RIDRmax of two sets of the 3-Story, 6-Story, and 9-Story 

SMRFs with and without considering linear FVDs. The 

results of testing the efficiency of two scalar-valued IMs 
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of IMM(α=0.5) and Saavg M-D showed that they had lower 

values of σlnIMRD compared to other assumed scalar-

valued IMs. In addition, two IMs of IMM(α=0.5) and 

Saavg M-D achieved higher values of FR in the mean 

dispersion, (σlnIMRD)avg. Moreover, the sufficiency of 

them, which is another important factor, was compared. 

The p-value of two IMs of IMM(α=0.5) and Saavg M-D with 

respect to seismic ground motion features of M, R, and 

Vs30, were higher than 0.05, which shows the sufficiency 

of assumed IMs. Therefore, two scalar-valued IMs of 

IMM(α=0.5) and Saavg M-D are proposed as optimal IMs for 

predicting the RIDRmax of SMRFs. 
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